Lignans and Neolignans from Sinocalamus affinis and Their Absolute Configurations

Liang Xiong, Chenggeng Zhu,* Yanru Li, Ye Tian, Sheng Lin, Shaopeng Yuan, Jinfeng Hu, Qi Hou, Naihong Chen, Yongchun Yang, and Jiangong Shi*
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education), Beijing 100050, People's Republic of China

(S) Supporting Information

Abstract

Twenty-two new lignans and neolignans ($\mathbf{1}-\mathbf{2 2}$), together with 14 known analogues, have been isolated from an ethanolic extract of the stem (with skin removed) of Sinocalamus affinis. Their structures were elucidated by spectroscopic and chemical methods. On the basis of systematic NMR and circular dichroism (CD) data analysis, the validity of $J_{7,8}$ and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values to distinguish threo and erythro aryl glycerol units in different neolignans and the CD data [particularly the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD data (the E band)] to determine the absolute configurations at C-8 (C-7) of the aryl glycerol units are discussed. At a concentration of $10 \mu \mathrm{M}$, compounds 20 and 22 inhibited NO production in mouse peritoneal macrophages $84.2 \pm 5.9 \%$ and $71.7 \pm 1.0 \%$, respectively. Compounds 19, 20, and 22 showed activity against serum deprivation induced PC12 cell damage by increasing the cell viability from $80.7 \pm 2.8 \%$ to $91.6 \pm$ $6.4 \%, 107.2 \pm 8.0 \%$, and $97.6 \pm 8.5 \%$, respectively.

Sinocalamus affinis (Rendle) McClure (Poaceae) is widely distributed and cultivated in southwestern China. ${ }^{1}$ Different parts of the plant, including the stem, leaves, and roots, are used in traditional Chinese medicine. ${ }^{1}$ Slices of the stem (with skin removed), named "ci zhu ru" in Chinese, are commonly used to treat various diseases, such as cough and phlegm. ${ }^{1,2}$ However, no chemical or pharmacological study of this remedy has been reported. ${ }^{2,3}$ As part of a program to study the chemical diversity of traditional Chinese medicines and their biological effects, an ethanol extract of "ci zhu ru" has been investigated. We describe herein the isolation, structure elucidation, and biological assays of 22 new lignans and neolignans ($\mathbf{1 - 2 2}$) and 14 known analogues from the EtOAc-soluble portion of the extract. On the basis of IUPC recommendations for nomenclature of lignans and neolignans, ${ }^{4}$ compound $\mathbf{1}$ is categorized as an unusual $6^{\prime}, 9$-epoxy- $2,7^{\prime}$-cyclolignane, 2 and 3 are $7^{\prime}, 8^{\prime}, 9^{\prime}$-trinor- and $8^{\prime}, 9^{\prime}$-dinor-8,4-oxyneolignanes, respectively, and 4 is a $8^{\prime}, 9^{\prime}$-dinor- $4,8^{\prime \prime}$-oxy- $8,3^{\prime}$-sesquineolignane. Though compounds with planar structures identical to sesquineolignans ($10-15$), ${ }^{5-9}$ dineolignans ($16-18$), ${ }^{9,10}$ and flavonolignans $(\mathbf{1 9}-\mathbf{2 2})^{11,12}$ were reported for more than 25 years, configurations for these complex natural products were undetermined with contrary and/or controversial data reported in the literature. ${ }^{5-12}$ Extensive NMR and CD data analyses, in combination with chemical transformations, have led to assignments of configuration for $\mathbf{1 0} \mathbf{- 2 2}$. In addition, by systematic comparison of the spectroscopic data, the validity of $J_{7,8}$ and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values to distinguish threo and erythro arylglycerol units in the different series of neolignans and the CD data [particularly, the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD data (the E band)] to determine the absolute configurations at $\mathrm{C}-7$ of the aryl glycerol units are discussed.

- RESULTS AND DISCUSSION

Compound 1 showed IR absorptions for $\mathrm{OH}\left(3246 \mathrm{~cm}^{-1}\right)$ and aromatic ring (1612 and $1493 \mathrm{~cm}^{-1}$) groups. The NMR data of 1 (Tables 1 and 2) indicated the presence of two pentasubstituted phenyl, four methoxy, three methylene (two oxygenbearing), and three methine groups. These data resembled those of the co-occurring $(+)$-lyoniresinol ${ }^{13}$ except that the resonances for the 4^{\prime}-hydroxy- $3^{\prime}, 5^{\prime}$-dimethoxyphenyl in (+)-lyoniresinol were replaced by those attributable to a dimethoxy-dioxyphenyl. This combined with the molecular formula $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8}$ (HRESIMS) suggested that $\mathbf{1}$ was an unusual $2,7^{\prime}$-cyclolignane containing an oxy-bridge between the dimethoxy-dioxy-phenyl and C-9 or C-9'. The suggestion was refined by 2D NMR data analysis of $\mathbf{1}$ (Supporting Information, Figures S6-S8). Particularly, in the HMBC spectrum, correlations for $\mathrm{H}_{2}-7 / \mathrm{C}-1, \mathrm{C}-2$, $\mathrm{C}-6, \mathrm{C}-8, \mathrm{C}-8^{\prime}$, and C-9; H-7 $/$ / $\mathrm{C}-1, \mathrm{C}-1^{\prime}, \mathrm{C}-2, \mathrm{C}-2^{\prime}, \mathrm{C}-3, \mathrm{C}-6^{\prime}$, $\mathrm{C}-8, \mathrm{C}-8^{\prime}$, and $\mathrm{C}-9^{\prime}$; $\mathrm{H}-5^{\prime} / \mathrm{C}-1^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$, and $\mathrm{C}-6^{\prime}$; OMe-2 ${ }^{\prime} / \mathrm{C}-$ 2^{\prime}; OMe-3/C-3; $\mathrm{OMe}-4^{\prime} / \mathrm{C}-4^{\prime}$; and $\mathrm{OMe}-5 / \mathrm{C}-5$, together with shifts of these resonances, proved that $\mathbf{1}$ had the basic structure of 3^{\prime},4-dihydroxy- $2^{\prime}, 3,4^{\prime}, 5$-tetramethoxy- $2,7^{\prime}$-cyclolignane. HMBC correlations for $\mathrm{H}_{2}-9 / \mathrm{C}-6^{\prime}$ revealed the oxy-bridge between $\mathrm{C}-6^{\prime}$ and $\mathrm{C}-9$. The remaining OH had to be positioned at $\mathrm{C}-9^{\prime}$ to match the molecular composition and shifts of $\mathrm{H}_{2}-9^{\prime}$ and $\mathrm{C}-9^{\prime}$. In the NOE difference spectrum of $\mathbf{1}$, irradiation of $\mathrm{H}-7^{\prime}$ enhanced $\mathrm{OMe}-2^{\prime}, \mathrm{OMe}-3, \mathrm{H}-8^{\prime}$, and $\mathrm{H}-9^{\prime}$ a, while $\mathrm{H}-9^{\prime} \mathrm{b}$ was enhanced upon irradiation of $\mathrm{H}-8$. These enhancements, together with the coupling constant of $J_{7^{\prime}, 8^{\prime}}(\approx 0 \mathrm{~Hz})$, indicated that the torsion

[^0]
angle between $\mathrm{H}-7^{\prime}$ and $\mathrm{H}-8^{\prime}$ was about 90° and revealed that $\mathrm{H}-8^{\prime}$ was trans-oriented to $\mathrm{H}-7^{\prime}$ and $\mathrm{H}-8$. The CD spectrum of $\mathbf{1}$ displayed a negative Cotton effect at $284 \mathrm{~nm}(\Delta \varepsilon-1.03)$ corresponding to the ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ band of the benzene chromophores. On the basis of the benzene sector and the benzene chirality rules for chiral tetralin derivatives, ${ }^{14}$ the $7^{\prime} S$ configuration was assigned for 1 (Supporting Information, Figure S10). Therefore, compound 1 was $(+)-\left(7^{\prime} S, 8 S, 8^{\prime} S\right)$ - $3^{\prime}, 4$-dihydroxy- $2^{\prime}, 3,4^{\prime}, 5$-tetra-methoxy-6', 9-epoxy-2, 7^{\prime}-cyclolignan- 9^{\prime}-ol.

Compound 2, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{8}$ (HRESIMS), showed IR absorptions for OH ($3405 \mathrm{~cm}^{-1}$) and aromatic ring (1603 and $1512 \mathrm{~cm}^{-1}$) groups. The NMR data (Tables 1 and 2) indicated that there were both guaiacylglycerol-8-yl and $3^{\prime}, 5^{\prime}$-dimethoxy- $1^{\prime}, 4^{\prime}$-dioxyphenyl groups in 2. The chemical shifts of the oxymethines and the coupling constant $\left(J_{7,8}=7.5 \mathrm{~Hz}\right)$, together with the molecular composition, suggested that 2 was 7,8 -threo- $1^{\prime}, 4$-dihydroxy- $3,3^{\prime}, 5^{\prime}$ -trimethoxy- $7^{\prime}, 8^{\prime}, 9^{\prime}$-trinor-8, 4^{\prime}-oxyneoligna- 7,9 -diol. ${ }^{15,16}$ This was confirmed by 2D NMR data analysis of 2 (Supporting Information, Figures S16-S18). The HMBC correlations from H-7 to C-1, C-2, C-6, C-8, and C-9, from $\mathrm{H}-2^{\prime} / 6^{\prime}$ to $\mathrm{C}-1^{\prime}, \mathrm{C}-3^{\prime} / 5^{\prime}$, and $\mathrm{C}-4^{\prime}$, and from $\mathrm{OMe}-3^{\prime} / 5^{\prime}$ to $\mathrm{C}-3^{\prime} / 5^{\prime}$, together with their shifts, verified the location of the substitutents and the $8,4^{\prime}$-oxy linkage in 2. A positive Cotton effect at 237 nm in the $C D$ spectrum suggested the $8 S$ configuration for $2 .{ }^{15-17}$ On the basis of the bulkiness rule for secondary alcohols, ${ }^{18}$ a positive Cotton effect at 351 nm (the E band) in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum (Supporting Information, Figure S19) indicated the $7 S$

no.	1	2	3	$3 a^{\text {b }}$	5	6^{c}	7	8	9
2		7.05 d (2.0)	6.96 brs	6.95 brs	6.75 brs	7.03 d (1.5)	7.34 brs	6.76 brs	6.69 brs
5		6.77 d (8.0)	6.69 d (8.0)	6.68 d (8.4)		6.80 d (8.0)			
6	6.40 s	6.90 dd (8.0, 2.0)	6.82 d (8.0)	6.80 d (8.4)	6.75 brs	6.88 dd (8.0, 1.5)	7.34 brs	6.76 brs	6.69 brs
7a	$\begin{aligned} & 3.02 \mathrm{dd} \\ & (17.0,7.5) \end{aligned}$	4.94 d (7.5)	4.94 d (7.0)	4.94 d (6.0)	5.59 d (6.5)	5.56 d (6.5)		4.92 d (8.5)	4.70 d (4.2)
7b	2.79 d (17.0)								
8	2.17 m	3.74 m	4.05 m	4.21 m	3.51 m	3.53 m	4.21 m	2.27 m	3.09 m
9 a	$\begin{aligned} & 4.34 \mathrm{dd} \\ & (12.0,3.0) \end{aligned}$	$\begin{aligned} & 3.59 \mathrm{dd} \\ & (12.5,3.5) \end{aligned}$	$\begin{aligned} & 3.70 \mathrm{dd} \\ & (12.0,3.5) \end{aligned}$	$\begin{aligned} & 3.72 \mathrm{dd} \\ & (12.0,4.2) \end{aligned}$	3.91 m	3.88 m	4.18 m	3.72 m	4.24 m
9 b	3.71 d (12.0)	$\begin{aligned} & 3.22 \mathrm{dd} \\ & (12.5,2.5) \end{aligned}$	$\begin{aligned} & 3.28 \\ & (12.0,2.5) \end{aligned}$	$\begin{aligned} & 3.33 \mathrm{dd} \\ & (12.0,3.6) \end{aligned}$	3.85 m	3.82 m	4.14 m	3.64 m	3.85 m
2^{\prime}		6.21 brs	7.32 brs	7.28 brs	6.96 brs	6.99 brs	6.67 brs	6.75 brs	6.67 brs
5^{\prime}	6.19 s								
6^{\prime}		6.21 brs	7.32 brs	7.28 brs	6.95 brs	6.97 brs	6.67 brs	6.75 brs	6.67 brs
$7{ }^{\prime}$	4.51 brs				6.52 d (16.0)	6.53 d (16.0)	4.59 d (8.5)	4.90 d (8.5)	4.66 d (4.2)
8^{\prime}	2.09 m				$6.24 \mathrm{dt}(16.0,5.5)$	$6.17 \mathrm{dt}(16.0,6.0)$	2.58 m	2.27 m	3.09 m
9^{\prime} a	$\begin{aligned} & 3.56 \mathrm{dd} \\ & (11.0,8.0) \end{aligned}$				4.19 (5.5)	4.05 d (6.0)	$\begin{aligned} & 3.64 \mathrm{dd} \\ & (11.5,4.5) \end{aligned}$	3.72 m	4.24 m
$9^{\prime} \mathrm{b}$	$\begin{aligned} & 3.48 \mathrm{dd} \\ & (11.0,7.5) \end{aligned}$						$\begin{aligned} & 3.59 \mathrm{dd} \\ & (11.5,5.0) \end{aligned}$	3.64 m	3.85 m
OMe-3/5	$3.31 \mathrm{~s} / 3.74 \mathrm{~s}$	3.82 s/	3.77 s/	3.77 s/	$3.82 \mathrm{~s} / 3.82 \mathrm{~s}$	3.81 s/	3.86 s/3.86 s	$3.82 \mathrm{~s} / 3.82 \mathrm{~s}$	3.81 s/3.81 s
OMe-4					3.70 s			3.71 s	3.69 s
OMe-2'/4'	3.84 s/3.67 s								
OMe-3'/5'		$3.81 \mathrm{~s} / 3.81 \mathrm{~s}$	$3.82 \mathrm{~s} / 3.82 \mathrm{~s}$	$3.83 \mathrm{~s} / 3.83 \mathrm{~s}$	/3.88 s	/3.86 s	$3.80 \mathrm{~s} / 3.80 \mathrm{~s}$	$3.82 \mathrm{~s} / 3.82 \mathrm{~s}$	$3.81 \mathrm{~s} / 3.81 \mathrm{~s}$

${ }^{a}$ Data were measured in $\mathrm{MeOH}-d_{4}$ at 500 MHz for $\mathbf{1 , 3}$, and 7 and at 600 MHz for 3a and in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ for 2, 5, 6, 8, 9 at 500 or 600 MHz . Coupling constants (J) in Hz are given in parentheses. The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, and HMBC. ${ }^{b}$ Data for COOMe in $3 \mathrm{a}: \delta 3.83 \mathrm{~s}$. ${ }^{c}$ Data for OEt in 6: $\delta 3.47 \mathrm{q}(7.0), 1.15 \mathrm{t}(7.0)$.

Table 2. ${ }^{13} \mathrm{C}$ NMR Data (δ) for Compounds $1-3,3 \mathrm{a}$, and 5-9 ${ }^{a}$

no.	1	2	3	$3 a^{\text {b }}$	5	6^{c}	7	8	9
1	127.6	133.8	133.4	133.5	138.5	132.2	128.6	140.0	138.5
2	124.1	111.6	111.8	111.7	104.0	108.3	107.8	104.5	104.1
3	147.5	147.9	148.8	148.7	154.4	146.2	149.2	154.3	154.4
4	138.2	146.8	147.2	147.2	138.5	145.1	142.9	$138.3{ }^{\text {d }}$	138.6
5	148.6	115.2	115.9	115.8	154.4	113.5	149.2	154.3	154.4
6	107.4	120.8	121.0	120.8	104.0	117.4	107.8	104.5	104.1
7	30.0	74.1	74.6	74.4	88.3	86.4	200.3	83.8	86.6
8	35.4	90.0	89.1	88.7	54.8	52.6	50.2	56.8	55.3
9	81.6	61.1	61.8	62.0	64.5	62.4	71.6	62.6	72.4
1^{\prime}	125.7	155.2	123.8	126.6	132.0	129.4	132.9	134.4	133.1
2^{\prime}	146.9	94.0	108.1	107.9	116.0	114.1	105.3	104.8	104.5
3^{\prime}	136.8	154.4	153.6	154.1	130.1	128.2	149.2	148.6	148.7
4^{\prime}	147.9	130.0	139.7	141.9	148.8	147.0	136.3	$137.0^{\text {d }}$	136.2
5^{\prime}	102.3	154.4	153.6	154.1	145.1	143.0	149.2	148.6	148.7
6^{\prime}	154.0	94.0	108.1	107.9	111.7	109.5	105.3	104.8	104.5
7^{\prime}	31.4		156.0^{d}	168.0	130.3	130.4	85.4	84.1	86.7
8^{\prime}	45.2				128.4	122.8	55.1	56.8	55.4
9^{\prime}	65.3				63.3	69.5	61.4	62.7	72.5
OMe-3/5	60.0/56.5	56.2/	56.4/	56.4/	56.4/56.4	54.1/	56.9/56.9	56.4/56.4	56.4/56.4
OMe-4					60.4			60.5	60.4
OMe-2'/4'	61.7/56.5								
OMe-3'/5'		56.4/56.4	56.6/56.6	56.8/56.8	/56.3	/54.2	56.8/56.8	56.7/56.7	56.5/56.5
$\Delta \delta_{\text {C8-C7 }}$		15.9	14.5	14.3					

${ }^{a}$ Data were measured in $\mathrm{MeOH}-d_{4}$ for $\mathbf{1 , 3}$, and 7 at 500 MHz and for $\mathbf{3 a}$ at 600 MHz and in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ for 2,5,6,8, and 9 at 500 MHz . The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, and HMBC experiments. ${ }^{b}$ Data for COOMe in 3a: $\delta 52.8$. ${ }^{c}$ Data for OEt in 6: δ 63.6, 13.4. ${ }^{d}$ Data were obtained from the HMBC spectrum.
configuration for 2 , which was in agreement with that defined by the 7,8 -threo and $8 S$ configurations assigned above. Thus, 2 was (+)-(7S,8S)-1',4-dihydroxy-3,3', 5^{\prime}-trimethoxy- $7^{\prime}, 8^{\prime}, 9^{\prime}$-trinor-8,4'-oxyneoligna-7,9-diol.

Compound $3\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9}\right)$ had an additional CO unit. The NMR spectra of 3 (Supporting Information, Figures S23-S25) resembled those of 2. However, the resonances for $\mathrm{H}-2^{\prime} / 6^{\prime}$ and $\mathrm{C}-2^{\prime} / 6^{\prime}$ of 3 were broadened, compared with those of 2 , and deshielded significantly by $\Delta \delta_{\mathrm{H}} 1.11$ and $\Delta \delta_{\mathrm{C}} 14.1 \mathrm{ppm}$, respectively. This suggested that $\mathrm{OH}-1^{\prime}$ in 2 was replaced by $\mathrm{COOH}-1^{\prime}$ in 3 to match the molecular composition, although the ${ }^{13} \mathrm{C}$ NMR spectrum displayed two fewer carbon resonances ($\mathrm{C}-1^{\prime}$ and $\mathrm{C}-7^{\prime}$) than those expected from the molecular formula. The presence of $\mathrm{COOH}-1^{\prime}$ was supported by the 2D NMR data analysis of 3 that amended the 1D NMR data assignments (Tables 1 and 2). This was confirmed by methylation of 3 with $\mathrm{CH}_{3} \mathrm{I}$ that produced 3a. The NMR spectra of 3a displayed resonances (Tables 1 and 2 and Supporting Information, Figures S31-S33) corresponding to COOMe. The ${ }^{1} \mathrm{H}$ NMR coupling constants of $3\left(J_{7,8}=7.0 \mathrm{~Hz}\right)$ and $3 \mathrm{a}\left(J_{7,8}=6.0 \mathrm{~Hz}\right)$ and positive Cotton effects in the CD spectra of $3(258 \mathrm{~nm})$ and $3 \mathrm{a}(262 \mathrm{~nm})$ suggested the $7 S, 8 S$ configuration (Supporting Information, Figures S29 and S34). This was supported by positive Cotton effects in the $\mathrm{Rh}_{2^{-}}$ $\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectra of $3(359 \mathrm{~nm})$ and 3a (356 nm) (Supporting Information, Figures S29 and S34). Therefore, compound 3 was deduced to be (+)-(7S,8S)-4-hydroxy3, $3^{\prime}, 5^{\prime}$-trimethoxy- $8^{\prime}, 9^{\prime}$-dinor-8, 4^{\prime}-oxyneoligna-7,9-diol- 7^{\prime}-oic acid.

Compound $4\left(\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{11}\right)$ showed IR absorption bands for $\mathrm{OH}\left(3429 \mathrm{~cm}^{-1}\right)$, conjugated carbonyl $\left(1680 \mathrm{~cm}^{-1}\right)$, and
aromatic ring (1592 and $1514 \mathrm{~cm}^{-1}$) groups. The NMR data of 4 (Tables 3 and 4) indicated the presence of a symmetric $3,4,5$-trisubstituted phenyl, an asymmetric $3^{\prime}, 4^{\prime}, 5^{\prime}$-trisubstituted phenyl, a $3^{\prime \prime}, 4^{\prime \prime}$-disubstituted phenyl, and aldehyde groups. Also evident were four aromatic OCH_{3}, two oxymethylene, and four methine (three oxygenated) groups. These data suggested that 4 was a dinorsesquineolignane. ${ }^{6 \mathrm{~b}, 10}$ In the HMBC spectrum of 4 , correlations for $\mathrm{H}-2$ (H-6)/C-1, C-4, and C-7; H-7/C-1, C-2, C-6, C-8, C-9, and C-4'; H-8/C-1, C-7, C-9, C-3', and C-4'; $\mathrm{H}-2^{\prime} / \mathrm{C}-4^{\prime}, \mathrm{C}-6^{\prime}, \mathrm{C}-7^{\prime}$, and $\mathrm{C}-8$; OMe-5 ${ }^{\prime} / \mathrm{C}-5^{\prime}$; and $\mathrm{OMe}-3$ (OMe-5)/C-3 (C-5) revealed the presence of a 4 -substituted $3,5,5^{\prime}-$ trimethoxy-4',7-epoxy-8, 3^{\prime}-neolignan-9-ol-7'-al moiety. In addition, HMBC correlations for $\mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime} / \mathrm{C}-4^{\prime \prime}$ and $\mathrm{C}-7^{\prime \prime}$; $\mathrm{H}-5^{\prime \prime} / \mathrm{C}-1^{\prime \prime}$ and $\mathrm{C}-3^{\prime \prime}$; $\mathrm{H}-7^{\prime \prime} / \mathrm{C}-1^{\prime \prime}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}, \mathrm{C}-8^{\prime \prime}$, and $\mathrm{C}-9^{\prime \prime}$; and $\mathrm{OMe}-3^{\prime \prime} / \mathrm{C}-3^{\prime \prime}$ indicated the presence of a guaiacylglycerol unit in 4. Although no HMBC correlation for $\mathrm{H}-8^{\prime \prime} / \mathrm{C}-4$ was observed, the connection between $\mathrm{C}-8^{\prime \prime}$ and $\mathrm{C}-4$ was indicated by the shifts for $\mathrm{H}-8^{\prime \prime}\left(\delta_{\mathrm{H}} 4.19\right)$ and $\mathrm{C}-8^{\prime \prime}\left(\delta_{\mathrm{C}} 87.8\right)$ and $\mathrm{C}-4\left(\delta_{\mathrm{C}}\right.$ 136.4) and $\mathrm{C}-3 / 5\left(\delta_{\mathrm{C}} 154.4\right) .{ }^{10,16,19}$ In the NOE difference spectrum of $4, \mathrm{H}-2$ and/or H-6 were enhanced when H-8 was irradiated, and irradiation of $\mathrm{H}-7$ gave an enhancement of $\mathrm{H}_{2}-9$. These enhancements combined with the coupling constant $\left(J_{7,8}=6.5 \mathrm{~Hz}\right)^{20}$ indicated the 7,8 -trans configuration for 4. The $7^{\prime \prime}, 8^{\prime \prime}$-erythro configuration was deduced by the coupling constant $J_{7^{\prime \prime}, 8^{\prime \prime}}(2.0 \mathrm{~Hz}) .{ }^{16}$ In the CD spectrum, a negative Cotton effect at $295 \mathrm{~nm}(\Delta \varepsilon-0.15)$ indicated that 4 had a $7 R, 8 S$ configuration on the basis of the reversed helicity rule of the ${ }^{1} L_{b}$ band CD for the 7-methoxy-2,3-dihydrobenzo[b]furan chromophore ${ }^{21}$ (Supporting Information, Figure S45). The $8^{\prime \prime} R$ configuration was proposed by a
Table 3. ${ }^{1} \mathrm{H}$ NMR Data (δ) for Compounds 4 and $10-15^{a}$

no.	4	10		11		12		13		14		15	
	$\mathrm{Me}_{2} \mathrm{CO}-d_{6}$	$\mathrm{Me}_{2} \mathrm{CO}-d_{6}$	CDCl_{3}										
2	6.83 brs	6.77 brs	6.63 brs	6.76 brs	6.62 brs	6.76 brs	6.63 brs	6.76 brs	6.62 brs	6.77 brs	6.64 brs	6.75 brs	6.70 brs
6	6.83 brs	6.77 brs	6.63 brs	6.76 brs	6.62 brs	6.76 brs	6.63 brs	6.76 brs	6.62 brs	6.77 brs	6.64 brs	6.75 brs	6.70 brs
7	5.75 d (6.5)	4.67 d (4.5)	4.76 d (5.0)	4.68 d (4.0)	4.75 d (5.5)	4.67 d (4.0)	4.75 d (4.5)	4.67 d (3.0)	4.75 d (5.0)	4.68 d (4.0)	4.75 (3.0)	4.67 d (3.5)	4.74 d (5.0)
8	3.70 m	3.11 m	3.13 m	3.12 m	3.13 m	3.11 m	3.11 m	3.10 m	3.09 m	3.11 m	3.12 m	3.10 m	3.09 m
9a	3.92 m	4.24 m	4.32 m	4.24 m	4.29 m	4.25 m	4.31 m	4.25 m	4.30 m	4.25 m	4.32 m	4.25 m	4.30 m
9b	3.92 m	3.85 m	3.93 m	3.85 m	3.91 m	3.86 m	3.94 m	3.85 m	3.90 m	3.84 m	3.94 m	3.86 m	3.91 m
2^{\prime}	7.52 brs	7.00 brs	6.91 brs	6.98 (1.0)	6.89 (1.0)	6.68 brs	6.59 brs	6.68 brs	6.58 brs	6.68 brs	6.59 brs	6.73 brs	6.62 brs
5^{\prime}		6.82 d (8.0)	6.90 d (8.0)	6.78 d (8.0)	$6.90 \mathrm{~d}(8.0)$								
6^{\prime}	7.44 brs	6.77 d (8.0)	$6.83 \mathrm{~d}(8.0)$	$6.83 \mathrm{dd}(8.0,1.0)$	$6.82 \mathrm{dd}(8.0,1.0)$	6.68 brs	6.59 brs	6.68 brs	6.58 brs	6.68 brs	6.59 brs	6.73 brs	6.62 brs
$7{ }^{\prime}$	9.84 s	4.73 d (4.5)	4.77 d (5.0)	4.73 d (4.0)	4.76 d (5.5)	4.73 d (3.5)	4.76 d (4.5)	4.73 d (4.0)	4.76 d (5.0)	4.73 d (4.0)	4.76 (3.0)	4.72 d (4.0)	4.75 d (5.0)
8^{\prime}		3.11 m	3.10 m	3.12 m	3.07 m	3.11 m	3.11 m	3.10 m	3.09 m	3.11 m	3.12 m	3.10 m	3.09 m
9^{\prime} a		4.24 m	4.28 m	4.24 m	4.27 m	4.25 m	4.31 m	4.25 m	4.30 m	4.25 m	4.32 m	4.25 m	4.30 m
$9^{\prime} \mathrm{b}$		3.85 m	3.93 m	3.85 m	3.91 m	3.86 m	3.94 m	3.85 m	3.90 m	3.84 m	3.94 m	3.86 m	3.91 m
$2^{\prime \prime}$	7.03 d (1.0)	7.03 brs	6.97 brs	7.04 d (1.0)	6.97 brs	6.99 brs	6.96 brs	7.03 brs	6.97 brs	6.65 brs	6.58 brs	6.68 brs	6.58 brs
$5^{\prime \prime}$	6.76 d (8.0)	6.82 d (8.0)	6.86 d (8.0)	$6.75 \mathrm{~d}(8.0)$	6.88 d (8.0)	6.82 d (8.0)	6.85 d (8.0)	$6.75 \mathrm{~d}(8.0)$	6.88 d (8.0)				
$6^{\prime \prime}$	6.82 dd (8.0, 1.0)	6.77 d (8.0)	6.75 d (8.0)	$6.89 \mathrm{dd}(8.0,1.0)$	$6.95 \mathrm{~d}(8.0)$	6.76 d (8.0)	6.74 d (8.0)	$6.89 \mathrm{~d}(8.0)$	6.96 d (8.0)	6.65 brs	6.58 brs	6.68 brs	6.58 brs
$7 \prime$	4.97 d (2.0)	4.97 (3.0)	5.00 (3.5)	4.97 d (7.0)	$5.02 \mathrm{~d}(8.5)$	4.98 (3.5)	4.99 brs	4.87 d (7.0)	$5.02 \mathrm{~d}(8.5)$	4.97 (4.0)	4.98 (3.5)	4.95 d (6.5)	5.01 d (8.5)
$8^{\prime \prime}$	4.19 m	4.15 m	4.13 m	3.94 m	$3.87{ }^{\text {b m }}$	4.15 m	4.13 m	3.95 m	3.89 m	4.17 m	4.11 m	4.00 m	3.89 m
$9^{\prime \prime} \mathrm{a}$	3.80 m	3.83 m	3.89 m	3.64 m	3.57 m	3.82 m	3.89 m	3.64 m	3.57 m	3.81 m	3.89 m	3.66 m	3.58 m
$9^{\prime \prime} \mathrm{b}$	3.45 dd (12.0, 3.0)	3.43 m	3.50 m	3.31 m	3.32 m	3.42 m	3.50 m	3.32 m	3.32 m	3.43 m	3.49 m	3.35 m	3.30 m
OMe-3/5	3.84 s	3.86 s	3.91 s	3.89 s	3.92 s	3.86 s	3.90 s	3.89 s	3.92 s	3.87 s	3.91 s	3.89 s	3.92 s
OMe-3'/5'	3.95 s	3.83 s	3.90 s	3.85 s	3.91 s	3.82 s	3.90 s	3.82 s	3.91 s	3.81 s	3.91 s	3.82 s	3.89 s
$\mathrm{OMe}-3^{\prime \prime} / 5^{\prime \prime}$	3.81 s	3.82 s	3.90 s	3.83 s	3.89 s	3.80 s	3.87 s	3.80 s	3.89 s	3.80 s	3.88 s	3.79 s	3.88 s
Data were measured for $\mathbf{4}$ and $\mathbf{1 0 - 1 5}$ at 500 MHz . Coupling constants (J) in Hz are given in parentheses. The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC , and HMBC ex													

Table 4. ${ }^{13} \mathrm{C}$ NMR Data (δ) for Compounds 4 and $10-15^{a}$

no.	$\frac{4}{\mathrm{Me}_{2} \mathrm{CO}-d_{6}}$	10		11		12		13		14		15	
		$\mathrm{Me}_{2} \mathrm{CO}-d_{6}$	CDCl_{3}										
1	138.1	139.0	137.8	139.2	137.9	139.1	137.7	139.2	137.8	139.1	137.8	139.2	137.9
2	104.3	104.1	102.8	104.0	102.7	104.0	102.7	103.9	102.7	104.8	102.9	104.0	102.7
3	154.4	154.2	153.5	153.8	153.1	154.2	153.3	153.8	153.1	154.1	153.5	153.8	153.5
4	136.4	135.7	134.3	136.1	134.6	135.7	134.2	136.0	134.4	135.8	134.4	136.1	134.4
5	154.4	154.2	153.5	153.8	153.1	154.2	153.3	153.8	153.1	154.1	153.5	153.8	153.5
6	104.3	104.1	102.8	104.0	102.7	104.0	102.7	103.9	102.7	104.8	102.9	104.0	102.7
7	89.6	86.6	86.0	86.6	85.9	86.7	85.9	86.7	86.0	86.7	86.0	86.7	86.0
8	54.0	55.1	54.1	55.1	54.0	55.2	54.2	55.2	54.4	55.2	54.4	55.2	54.3
9	64.2	72.5	72.2	72.5	72.1	72.6	71.9	72.6	72.0	72.6	72.1	72.6	72.0
1^{\prime}	132.6	134.1	132.7	134.1	132.7	133.7	131.8	133.7	131.9	133.1	131.9	133.1	131.9
2^{\prime}	121.3	110.9	108.6	110.6	108.6	104.4	102.7	104.4	102.7	104.4	102.8	104.5	102.7
3^{\prime}	131.0	148.0	146.6	148.3	146.7	148.7	147.2	148.7	147.2	148.7	147.2	148.7	147.2
4^{\prime}	154.7	146.9	145.3	146.7	145.3	136.2	134.4	136.2	134.6	136.2	134.4	136.2	134.6
5^{\prime}	145.8	115.5	114.3	115.2	114.2	148.7	147.2	148.7	147.2	148.7	147.2	148.7	147.2
6^{\prime}	113.5	120.0	118.9	119.6	118.9	104.4	102.7	104.4	102.7	104.4	102.8	104.5	102.7
7^{\prime}	190.9	86.5	85.7	86.5	85.7	86.6	85.8	86.5	85.8	86.6	86.0	86.5	85.8
8^{\prime}		55.4	54.5	55.5	54.5	55.4	54.3	55.4	54.5	55.4	54.5	55.4	54.5
9^{\prime}		72.3	71.5	72.3	71.5	72.4	71.6	72.4	71.7	72.4	71.7	72.4	71.7
$1^{\prime \prime}$	133.7	134.0	131.3	133.7	131.9	133.1	131.2	133.0	131.9	133.0	130.4	132.7	131.0
$2^{\prime \prime}$	110.9	110.6	108.3	111.3	109.7	110.9	108.5	111.3	109.8	104.1	102.6	105.3	104.0
$3^{\prime \prime}$	147.9	148.3	146.7	147.9	146.4	148.0	146.6	147.9	146.5	148.4	147.1	148.3	147.0
$4^{\prime \prime}$	146.4	146.4	144.9	146.9	145.4	146.4	144.8	146.7	145.4	133.1	134.0	136.0	134.3
$5^{\prime \prime}$	115.2	115.2	114.1	115.5	114.3	115.2	114.2	115.2	114.3	148.4	147.1	148.3	147.0
$6^{\prime \prime}$	120.0	119.6	118.7	120.6	120.4	120.0	118.7	120.6	120.3	104.1	102.6	105.3	104.0
$7^{\prime \prime}$	73.4	73.4	72.5	73.9	74.1	73.3	72.4	73.9	74.0	73.6	72.7	74.0	74.3
$8^{\prime \prime}$	87.8	87.9	87.1	89.6	89.1	87.8	86.9	89.6	89.0	87.9	87.2	89.3	89.1
$9^{\prime \prime}$	61.0	61.0	60.6	61.4	60.5	60.9	60.4	61.4	60.5	61.0	60.6	61.5	60.5
OMe-3/5	56.6	56.6	56.2	56.6	56.2	56.6	56.3	56.6	56.5	56.8	56.4	56.6	56.4
OMe-3'/5 ${ }^{\prime}$	56.4	56.2	56.0	56.2	56.0	56.6	56.2	56.6	56.4	56.8	56.4	56.6	56.3
OMe-3'/ $/ 5^{\prime \prime}$	56.2	56.2	56.0	56.2	56.0	56.2	55.9	56.2	56.0	56.6	56.3	56.5	56.2
$\Delta \delta_{\mathrm{C} 8}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$	14.4	14.5	14.6	15.7	15.0	14.5	14.5	15.7	15.0	14.3	14.5	15.3	14.8
Data were measured for $\mathbf{4}$ and $\mathbf{1 0 - 1 5}$ at 125 MHz . The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, and HMBC experiments.													

negative Cotton effect at $235 \mathrm{~nm} .{ }^{15-17}$ The $7^{\prime \prime} S$ configuration defined by the $7^{\prime \prime}, 8^{\prime \prime}$-erythro was supported by a positive Cotton effect at 347 nm (the E band) in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum of 4^{18} (Supporting Information, Figure S45). Therefore, compound 4 was (-)-(7R, $\left.8 S, 7^{\prime \prime} S, 8^{\prime \prime} R\right)-3,3^{\prime \prime}, 5,5^{\prime}$ - tetramethoxy- $4^{\prime \prime}$-hydroxy- $4^{\prime}, 7-$ epoxy- $8^{\prime}, 9^{\prime}$-dinor- $4,8^{\prime \prime}$-oxy- $8,3^{\prime}$-sesquineoligna- $7^{\prime \prime}, 9,9^{\prime \prime}$-triol- 7^{\prime}-al.

Compound 5 exhibited spectroscopic data (Tables 1 and 2 and Experimental Section) almost identical to those of woorenogenin, ${ }^{22}$ but with opposite Cotton effects. Comprehensive analysis of the 2D NMR and NOE difference spectra proved that 5 had the same planar structure and relative configuration as woorenogenin. On the basis of the reversed helicity rule of the ${ }^{1} L_{b}$ band $C D$ for the 7 -methoxy-2,3-dihydrobenzo[b]furan chromophore, ${ }^{21}$ a negative Cotton effect at 272 nm in the CD spectrum of 5 indicated that it had a $7 R, 8 S$ configuration (Supporting Information, Figure S54), and this was supported by the negative optical rotation (the reported optical rotation of woorenogenin was ambiguous). ${ }^{23}$ Thus, compound 5 was (-)-($\left.7 R, 8 S, 7^{\prime} E\right)-3,4,5,5^{\prime}-$ tetramethoxy-4',7-epoxy-8, 3^{\prime}-neolign- 7^{\prime}-ene-9, 9^{\prime}-diol.

Compound $6\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}\right)$ had UV, IR, and NMR spectroscopic features similar to those of 5 , except that the NMR
resonances of the 3,4,5-trimethoxyphenyl group in 5 were replaced by those attributed to 3-methoxy-4-hydroxyphenyl and ethoxy units in 6 (Tables 1 and 2). In addition, the resonance for C-9' of $\mathbf{6}$ was deshielded significantly as compared with that of 5. This implied that $\mathrm{OH}-9^{\prime}$ in $\mathbf{5}$ was substituted by $\mathrm{OEt}-9^{\prime}$ in $\mathbf{6}$, which was confirmed by a correlation for $\mathrm{H}_{2}-1^{\prime \prime} / \mathrm{C}-9^{\prime}$ in the HMBC spectrum of 6 (Supporting Information, Figure S62). The optical rotation and CD data of 6 were opposite of those of 5, indicating a $7 S, 8 R$ configuration for $6{ }^{21}$ Accordingly, compound 6 was determined as $(+)-\left(7 S, 8 R, 7^{\prime} E\right)$-4-hydroxy-3, 5^{\prime}-dimethoxy$4^{\prime}, 7$-epoxy-8, 3^{\prime}-neolign- 7^{\prime}-ene-9,9'-diol 9^{\prime}-ethyl ether. The ethyl group in $\mathbf{6}$ could be an artifact formed during isolation, although the de-ethyl precursor of 6 was not obtained in this study.

Compound 7, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{9}$, showed IR absorptions for OH ($3473 \mathrm{~cm}^{-1}$), conjugated carbonyl ($1661 \mathrm{~cm}^{-1}$), and aromatic ring (1611 and $1518 \mathrm{~cm}^{-1}$) groups. The NMR data (Tables 1 and 2) were similar to those of wikstrone ${ }^{15}$ except for substitution of the resonances for the 4^{\prime}-hydroxy- $3^{\prime}, 5^{\prime}$-dimethoxyphenyl moiety in 7 by those for the 4^{\prime}-hydroxy- 3^{\prime}-methoxyphenyl unit in wikstrone. This was confirmed by 2D NMR data analysis (Supporting Information, Figures S71-S73). The shifts and
coupling constants for $\mathrm{H}-7^{\prime}$ and $\mathrm{H}-8^{\prime}$ of 7 , similar to those of wikstrone, indicated that $\mathrm{H}-8^{\prime}$ was oriented opposite $\mathrm{H}-7^{\prime}$ and $\mathrm{H}-8$. This was verified by enhancements of H-2/H-6 and H-2 / $\mathrm{H}-6^{\prime}$ (overlapped each pair) when $\mathrm{H}-8^{\prime}$ was irradiated in the NOE difference spectrum of 7. In the CD spectrum of 7, Cotton effects (negative at 324 nm and positive at 286 nm) arising from the exciton coupling of the benzoyl and benzene chromphores (Supporting Information, Figure S75) suggested the $7^{\prime} S, 8 S, 8^{\prime} R$ configuration. ${ }^{15}$ Thus, compound 7 was determined to be $(-)$ ($7^{\prime} S, 8 S, 8^{\prime} R$)-4, 4^{\prime}-dihydroxy-3,3' ${ }^{\prime}$,5,5' ${ }^{\prime}$-tetramethoxy- 7^{\prime},9-epoxylignan-9^{\prime}-ol-7-one.

Compound 8 had the molecular formula $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{9}$, and the NMR data of 8 (Tables 1 and 2) were similar to those of icariol $\mathrm{A}_{2} .{ }^{24}$ However, resonances for an additional OCH_{3} were observed in the spectra of 8 . This indicated replacement of $\mathrm{OH}-4$ in icariol A_{2} by $\mathrm{OMe}-4$ in 8 , which was proved by 2D NMR analysis. Detailed explanation of the HMBC data (Supporting Information, Figure S83) amended the assignment of the shifts for C-4 and $\mathrm{C}-4^{\prime}$ that were not observed in the ${ }^{13} \mathrm{C}$ NMR spectrum of 8 due to limitation of the sample amount available. The ${ }^{1} \mathrm{H}$ NMR shifts and coupling constants for $\mathrm{H}-7, \mathrm{H}-7^{\prime}, \mathrm{H}-8$, and $\mathrm{H}-8^{\prime}$ of 8 indicated the trans-orientation between each pair of the vicinal protons. ${ }^{24}$ The CD spectrum displayed a typical coupled Cotton effect, positive at $243 \mathrm{~nm}(\Delta \varepsilon+10.9)$ and negative at 207 nm ($\Delta \varepsilon-16.6$), indicating exciton coupling between the $\pi \rightarrow \pi^{*}$ transition of the phenyl chromophores (Supporting Information, Figure S84). The positive chirality revealed the $7 R, 7^{\prime} R, 8 S, 8^{\prime} S$ configuration for $8,{ }^{25}$ which was supported by the positive optical rotation $\left\{[\alpha]_{\mathrm{D}}^{20}+25.5\right.$ (c $\left.\left.0.04, \mathrm{MeOH}\right)\right\} .{ }^{24 \mathrm{~b}, 25}$ Therefore, compound 8 was determined to be $(+)-\left(7 R, 7^{\prime} R, 8 S, 8^{\prime} S\right)-4^{\prime}$ -hydroxy-3,3' $4,5,5^{\prime}$-pentamethoxy-7, 7^{\prime}-epoxy lignan- $9,9^{\prime}$-diol.

Compound $9, \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8}$, displayed spectroscopic data similar to those of $(-)$-syringaresinol. ${ }^{26}$ However, the NMR spectra in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ indicated partial separation of resonances for the two aryl groups and the presence of a phenolic OH and five OCH_{3} groups in 9 . This suggested that 9 was 4^{\prime}-hydroxy- $3,3^{\prime}, 4,5,5^{\prime}-$ pentamethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxylignane. 2D NMR data analysis of 9 (Supporting Information, Figures S91-S93) provided unambiguous assignments. The coupling constants of $J_{7,8}$ and $J_{7^{\prime}, 8^{\prime}}(4.2 \mathrm{~Hz})$ and the shifts of $\mathrm{H}-7 / \mathrm{H}-7^{\prime}, \mathrm{H}-8 / \mathrm{H}-8^{\prime}$, and $\mathrm{C}-8 / \mathrm{C}-$ 8^{\prime} indicated that the aryl groups were pseudoequatorial and cisoriented with $\mathrm{H}-8$ and $\mathrm{H}-8^{\prime}$ in $9 .{ }^{20,27}$ The CD data (negative at 274, 239, and 214 nm) and specific rotation $\left\{[\alpha]^{20}{ }_{\mathrm{D}}-45.8\right.$ (c $0.03, \mathrm{MeOH})\}$ of 9 were consistent with those of (-)syringaresinol ${ }^{26}$ (Supporting Information, Figure S247), but opposite those of $(+)$-syringaresinol. ${ }^{28,29}$ Therefore, compound 9 was (-)-($7 R, 7^{\prime} R, 8 S, 8^{\prime} S$)-4 4^{\prime}-hydroxy-3, $3^{\prime}, 4,5,5^{\prime}$-pentamethoxy- 7 , $9^{\prime}: 7^{\prime}, 9$-diepoxylignane.

Compound 10 had the molecular formula $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{11}$, and comparison of the NMR data between 10 (Tables 3 and 4) and medioresinol ${ }^{29}$ indicated that they differed in the presence of resonances attributable to an additional $4^{\prime \prime}$-hydroxy- $3^{\prime \prime}$-methoxy-phenylglycerol-8 $8^{\prime \prime}$-yl moiety in $\mathbf{1 0}$. The coupling constant for $J_{7^{\prime \prime}, 8^{\prime \prime}}$ $(3.0 \mathrm{~Hz})$ indicated an erythro configuration for the aryl glycerol- $8^{\prime \prime}$ yloxy moiety, ${ }^{9}$ and shifts of resonances for C-8" (87.9) and C-3/5 $(154.2)^{10}$ in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ revealed that the aryl glycerol-8 ${ }^{\prime \prime}$-yloxy was located at C-4. This suggested that $\mathbf{1 0}$ had the same planar structure as hedyotol C^{5} and/or buddlenol E. ${ }^{6}$ However, hedyotol C, with configuration undetermined, was reported to have contrary optical rotations (positive ${ }^{5 \mathrm{a}, \mathrm{b}}$ and negative ${ }^{5 \mathrm{c}, \mathrm{d}}$), and buddlenol E was reported as a mixture of $7^{\prime \prime}, 8^{\prime \prime}$-erythro and threo isomers. ${ }^{6, \mathrm{a},}$ Comparison of the NMR data between 10 and hedyotol C
demonstrated that they had the same relative configuration. The relative configuration of 10 was supported by the ${ }^{1} \mathrm{H}$ NMR coupling constants $J_{7,8}, J_{7^{\prime} 8^{\prime}}$, and $J_{7^{\prime \prime}, 8^{\prime \prime}}$ in the spectrum of the acetonide derivative (10a) (Supporting Information, Figure S108 and Table S1). Alkaline hydrolysis of $\mathbf{1 0}$ liberated a product having the spectroscopic data including $[\alpha]_{\mathrm{D}}$ identical to (-)-medioresinol. Comparing the CD data of $(-)$-medioresinol with those of $\mathbf{1 0}$ and 10a (Supporting Information, Figures S106, S110, and S247), a negative ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ Cotton effect at 281 nm in the CD spectra of $\mathbf{1 0}$ and 10a supported the $7 R, 7^{\prime} R, 8 S, 8^{\prime} S$ configuration. ${ }^{28,30}$ In addition, a positive Cotton effect at 239 nm indicated the $8^{\prime \prime} S$ configuration for 10 and $10 a .{ }^{15-17}$ The $7^{\prime \prime} R$ configuration defined by the $7^{\prime \prime}, 8^{\prime \prime}$ erythro was supported by a negative Cotton effect at 353 nm (the E band) in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum of 10 since the E band was absent in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD of 10a and $(-)$-medioresinol (Supporting Information, Figure S106). Thus, 10 was (-)-($\left.7 R, 7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}$-dihydroxy- $3,3^{\prime}, 3^{\prime \prime}, 5-$ tetramethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy- $4,8^{\prime \prime}$-oxy- $8,8^{\prime}$-sesquineo-lignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol.

The spectroscopic data of 11 (Tables 3 and 4 and Experimental Section) were consistent with hedyotol D. ${ }^{\text {Sa,c,d }}$ However, the configuration and $[\alpha]_{D}$ values (positive ${ }^{5 a}$ and negative ${ }^{5 c, d}$) of hedyotol D were ambiguous. Using the same methods as described for 10 (Supporting Information, Figures S122-126 and Table S1), the $7 R, 7^{\prime} R, 7^{\prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S$ configuration of $\mathbf{1 1}$ was elucidated. Particularly, in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum, a positive Cotton effect at 348 nm opposite that of 10 (Supporting Information, Figure S122) supported the $7^{\prime \prime} S$ configuration for 11.

The spectroscopic data of $\mathbf{1 2}$ (Tables 3 and 4 and Experimental Section) were almost identical to those of buddlenol C, which was reported to have controversial configuration. ${ }^{6 a, b, 7}$ The $7 R, 7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S$ configuration of 12 was verified by the NMR data of the acetonide product (12a) (Supporting Information, Figures S140-142 and Table S1) as well as by alkaline hydrolysis producing $(-)$-syringaresinol and the CD data of $\mathbf{1 2}$ and 12a including the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD data of $\mathbf{1 2}$ (negative at 351 nm) (Supporting Information, Figure S138).

Compound $\mathbf{1 3}$ was the $7^{\prime \prime}, 8^{\prime \prime}$-threo isomer of $\mathbf{1 2}$ possessing a $7^{\prime \prime} S$ configuration, as indicated by the spectroscopic data (Tables 3 and 4 and Experimental Section) and confirmed by the same procedures as described above (Supporting Information, Figures S153-155 and Table S1). $7^{\prime \prime}, 8^{\prime \prime}$-threo-Buddlenol C was reported to have UV, IR, MS, and NMR data identical to 13, but with ambiguous configuration ${ }^{6, b, b}$ and $[\alpha]_{D}$ value (positive ${ }^{7 f}$).

The spectroscopic data of 14 (Tables 3 and 4 and Experimental Section) were in agreement with those of buddlenol D, which was assigned ambiguous configuration. ${ }^{6 a, 7 c, 7 e, 8}$ Using the same methods as above (Supporting Information, Figures S167-S171 and Table S1), compound $\mathbf{1 4}$ was (-$)-\left(7 R, 7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}-$ dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5,5^{\prime}, 5^{\prime \prime}$-hexamethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy- $4,8^{\prime \prime}$-oxy-$8,8^{\prime}$-sesquineolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol.

Differences of the spectroscopic data between 15 and 14 (Tables 3 and 4 and Experimental Section) were similar to those between 11 and 10 and between 13 and 12. This demonstrated that 15 was the $7^{\prime \prime}, 8^{\prime \prime}$-threo isomer of 14 . The $7 R, 7^{\prime} R, 7^{\prime \prime} S, 8 S$, $8^{\prime} S, 8^{\prime \prime} S$ configuration of 15 was substantiated also as described above (Supporting Information, Figures S179-S183 and Table S1).

Compound 16 had the molecular formula $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{16}$ (HRESIMS), and the NMR data (Table 5) resembled those of hedyotisol A, having conflicting configuration and $[\alpha]_{\mathrm{D}}$ values (optical inactive ${ }^{7 \mathrm{~h}, 9}$ and negative ${ }^{10}$). The $7^{\prime \prime}, 8^{\prime \prime}: 7^{\prime \prime \prime}, 8^{\prime \prime \prime}$-di-erythro

Table 5. NMR Data (δ) for Compounds $16-18^{a}$

no.	16		17		18		no.	16		17		18	
	δ_{H}	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$		δ_{H}	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$
1		138.9		139.1		139.0	$1^{\prime \prime}$		133.7		133.7		133.7
2	6.76 brs	104.0	6.76 brs	104.0	6.76 brs	104.1	$2^{\prime \prime}$	7.03 d (1.5)	110.9	7.03 d (1.5)	111.3	7.03 brs	110.9
3		154.1		153.9		154.2	$3^{\prime \prime}$		147.9		147.9		147.9
4		135.6		136.1		135.5	$4^{\prime \prime}$		146.4		146.7		146.5
5		154.1		153.9		154.2	$5^{\prime \prime}$	6.76 d (8.4)	115.2	6.75 d (8.5)	115.2	6.75 d (8.0)	115.2
6	6.76 brs	104.0	6.76 brs	104.0	6.76 brs	104.1	$6^{\prime \prime}$	6.82 dd (8.4, 1.5)	120.0	6.89 dd (8.5, 1.5)	120.6	6.82 d (8.0)	120.0
7	4.74 d (3.3)	86.4	4.74 d (3.0)	86.5	4.74 d (3.0)	86.4	$7^{\prime \prime}$	4.97 brs	73.3	4.98 d (7.0)	73.9	4.97 brs	73.4
8	3.12 m	55.3	3.12 m	55.4	3.12 m	55.3	$8^{\prime \prime}$	4.16 m	87.7	3.94 m	89.6	4.15 m	87.8
9a	4.28 m	72.6	4.28 m	72.6	4.28 m	72.6	$9^{\prime \prime}{ }^{\prime}$	3.85 m	60.9	3.64 m		3.84 m	61.0
9 b	3.91 m		3.89 m		3.91 m		$9^{\prime \prime} \mathrm{b}$	3.45 m		3.31 m	61.4	3.45 m	
1^{\prime}		138.9		139.1		139.1	$1^{\prime \prime \prime}$		133.7		133.7		133.8
2^{\prime}	6.76 brs	104.0	6.76 brs	104.0	6.76 brs	104.0	$2^{\prime \prime \prime}$	7.03 d (1.5)	110.9	7.03 d (1.5)	111.3	7.03 brs	111.3
3^{\prime}		154.1		153.9		153.9	$3^{\prime \prime \prime}$		147.9		147.9		148.0
4^{\prime}		135.6		136.1		135.7	$4^{\prime \prime \prime}$		146.4		146.7		146.7
5^{\prime}		154.1		153.9		153.9	$5^{\prime \prime \prime}$	6.76 d (8.4)	115.2	6.75 d (8.5)	115.2	6.75 d (8.0)	115.2
$6{ }^{\prime}$	6.76 brs	104.0	6.76 brs	104.0	6.76 brs	104.0	$6^{\prime \prime \prime}$	6.82 dd (8.4, 1.5)	120.0	6.89 dd (8.5, 1.5)	120.6	6.89 d (8.0)	120.6
$7{ }^{\prime}$	4.74 d (3.3)	86.4	4.74 d (3.0)	86.5	4.74 d (3.0)	86.5	$7^{\prime \prime \prime}$	4.97 brs	73.3	4.98 d (7.0)	73.9	4.97 (7.0)	73.9
8^{\prime}	3.12 m	55.3	3.12 m	55.4	3.12 m	55.3	$8^{\prime \prime \prime}$	4.16 m	87.7	3.94 m	89.6	3.94 m	89.6
9^{\prime} a	4.28 m	72.6	4.28 m	72.6	4.28 m	72.6	$9^{\prime \prime \prime}{ }^{\prime \prime}$	3.85 m	60.9	3.64 m	61.4	3.64 m	61.4
$9^{\prime} \mathrm{b}$	3.91 m		3.89 m		3.89 m		$9^{\prime \prime \prime} \mathrm{b}$	3.45 m		3.31 m		3.31 m	
OMe-3/5	3.85 s	56.6	3.89 s	56.6	3.86 s	56.6	OMe-3'1/ $/ 5^{\prime \prime \prime}$	3.81 s	56.2	3.80 s	56.2	3.80 s	56.2
OMe-3'/5'	3.85 s	56.6	3.89 s	56.6	3.89 s	56.6	$\Delta \delta_{\mathrm{C}}{ }^{\prime \prime}{ }^{\prime \prime} \mathrm{Cl}^{\prime \prime}{ }^{\prime \prime}$		14.4		15.7		14.4
$\mathrm{OMe}-3^{\prime \prime} / 5^{\prime \prime}$	3.81 s	56.2	3.80 s	56.2	3.82 s	56.2	$\Delta \delta_{\mathrm{C} 8}{ }^{\prime \prime \prime}{ }_{-\mathrm{C} 7}{ }^{\prime \prime \prime}$		14.4		15.7		15.7

${ }^{a 1} \mathrm{H}$ NMR data were measured in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ at 300 MHz for 16 and at 500 MHz for 17 and 18 , respectively. Proton coupling constants (J) in Hz are given in parentheses. ${ }^{13} \mathrm{C}$ NMR data were measured in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ at 125 MHz for $\mathbf{1 6}-\mathbf{1 8}$. The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{HCOSY}$, HSQC , and HMBC experiments.
configuration of 16 was indicated by the coupling constant of $J_{7^{\prime \prime}, 8^{\prime \prime}} / J_{7^{\prime \prime \prime}, 8^{\prime \prime \prime}}(\approx 0 \mathrm{~Hz})$ and the shifts of $\mathrm{H}-8^{\prime \prime} / 8^{\prime \prime \prime}, \mathrm{H}_{2}-9^{\prime \prime} / 9^{\prime \prime \prime}$, and $\mathrm{C}-8^{\prime \prime} / 8^{\prime \prime \prime}$. Alkaline hydrolysis of 16 generated (-)-syringaresinol, suggesting the $7 R, 7^{\prime} R, 8 S, 8^{\prime} S$ configuration. This was supported by a negative ${ }^{1} \mathrm{~L}_{\mathrm{b}}$ Cotton effect at $287 \mathrm{~nm}^{28,30}$ in the CD spectrum of 16 . In addition, the $8^{\prime \prime} S, 8^{\prime \prime \prime} S$ configuration was proposed by a positive Cotton effect at $234 \mathrm{~nm}^{15-17}$ and supported by a negative Cotton effect at 351 nm (the E band) in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum of 16 (Supporting Information, Figure S190).

The spectroscopic data of 17 (Table 5 and Experimental Section) indicated that it was the $7^{\prime \prime}, 8^{\prime \prime}: 7^{\prime \prime \prime}, 8^{\prime \prime \prime}$-di-threo isomer of 16. Application of the same methods as described for 16 resulted in the assignment of a $7 R, 7^{\prime} R, 7^{\prime \prime} S, 7^{\prime \prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S, 8^{\prime \prime \prime} S$ configuration for 17. Particularly, in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum, a positive Cotton effect at 350 nm (Supporting Information, Figure S197) substantiated the $7^{\prime \prime} R, 7^{\prime \prime \prime} R$ configuration for 17 . It was reported that hedyotisol C had MS and NMR data identical to 17, but it also had ambiguous configuration (optically inactive ${ }^{9 a, d, f}$).

Compound 18 was another isomer of 16 , as indicated by the spectroscopic data (Table 5 and Experimental Section). However, the NMR resonances for the two disubstituted aryl glycerol units were partially separated. Analysis of the 1D and 2D NMR data of 18 indicated that the resonances for one aryl glycerol unit [$\mathrm{H}-8^{\prime \prime}, \mathrm{H}_{2}-9^{\prime \prime}$, and $\left.\mathrm{C}-8^{\prime \prime}\right]$ were identical to those of $\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 4}$, and 16 , whereas the resonances for another aryl glycerol unit [H $8^{\prime \prime \prime}, \mathrm{H}_{2}-9^{\prime \prime \prime}$, and $\left.\mathrm{C}-8^{\prime \prime \prime}\right]$ were identical with those of $11,13,15$, and 17. These data indicated that 18 was the $7^{\prime \prime}, 8^{\prime \prime}$-erythro $-7^{\prime \prime \prime}, 8^{\prime \prime \prime}$ threo stereoisomer of 16 and 17 . In the CD spectrum of 18 , a positive Cotton effect at 235 nm with intensity similar to those of 16 and 17 suggested that they had the same $8^{\prime \prime} S, 8^{\prime \prime \prime} S$ configuration. The $7^{\prime \prime} R, 7^{\prime \prime \prime} S$ configuration defined by the $7^{\prime \prime}, 8^{\prime \prime}$-erythro$7^{\prime \prime \prime}, 8^{\prime \prime \prime}$-threo configuration was supported by comparison of the
$\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD of 18 with 16 and 17 . The $\mathrm{Rh}_{2}-$ $\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum of 18 gave a diminished positive Cotton effect with the intensity representing deduction of the half-intensity of the Cotton effect for the $7^{\prime \prime} R, 7^{\prime \prime \prime} R$-isomer (16) from that for the $7^{\prime \prime} S, 7^{\prime \prime \prime} S$-isomer (17). Accordingly, 18 was (+)-($\left.7 R, 7^{\prime} R, 7^{\prime \prime} R, 7^{\prime \prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S, 8^{\prime \prime \prime} S\right)-4^{\prime \prime}, 4^{\prime \prime \prime}$-dihydroxy- $3,3^{\prime}, 3^{\prime \prime}$, $3^{\prime \prime \prime}, 5,5^{\prime}$-hexamethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy- $4,8^{\prime \prime}: 4^{\prime}, 8^{\prime \prime \prime}$-bisoxy-8, 8^{\prime}-di-neolignan- $7^{\prime \prime}, 7^{\prime \prime \prime}, 9^{\prime \prime}, 9^{\prime \prime \prime}$-tetraol. Hedyotisol B was reported to have spectroscopic data similar to those of 18; however, its configuration had not been determined (optical inactive $\left.{ }^{9 \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{f}}\right)$.

Compound 19 had spectroscopic data (Table 6 and Experimental Section) similar to those of calquiquelignans D, having undetermined absolute configuration. ${ }^{11}$ The relative configuration for the glycerol unit in 19 could not be deduced from the $J_{7^{\prime \prime}, 8^{\prime \prime}}$ value since $\mathrm{H}-7^{\prime \prime}$ appeared as a broad singlet in the ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- $d_{6} .{ }^{12 \mathrm{~b}}$ However, in the acetonide derivative (19a) (Supporting Information, Figure S219 and Table S2), the $J_{7^{\prime \prime}, 8^{\prime \prime}}$ value (9.4 Hz) proved the $7^{\prime \prime}, 8^{\prime \prime}$-erythro configuration for 19. ${ }^{16,31}$ The CD spectrum of 19 displayed a typical coupled Cotton effect arising from exciton coupling between the transition moments of the flavone and benzene chromophores, negative at $362 \mathrm{~nm}(\Delta \varepsilon-0.13)$ and positive at $322 \mathrm{~nm}(\Delta \varepsilon+0.09)$ (Supporting Information, Figure S217). On the basis of the CD exciton chirality method, ${ }^{32}$ the negative chirality CD suggested the $7^{\prime \prime} R, 8^{\prime \prime} S$ configuration for 19 . The $7^{\prime \prime} R$ configuration defined by the $7^{\prime \prime}, 8^{\prime \prime}$-erythro was supported by a negative Cotton effect at 356 nm (the E band) in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum (Supporting Information, Figure S218). Hence, 19 was $(-)-\left(7^{\prime \prime} R, 8^{\prime \prime} S\right)-4^{\prime \prime}, 5,7$-trihydroxy- $3^{\prime}, 5^{\prime}$-dimethoxy- $4^{\prime}, 8^{\prime \prime}$-oxy-flavonolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol.

The spectroscopic data of $\mathbf{2 0}$ (Table 6 and Experimental Section) resembled those of calquiquelignans $\mathrm{E}\left\{[\alpha]^{20}{ }_{\mathrm{D}}+27.0\right.$ (c 0.48,

Table 6. NMR Data (δ) for Compounds 19-22 ${ }^{a}$

no.	19		20		21		22	
	δ_{H}	$\delta_{\text {C }}$						
2		163.0		163.0		162.9		162.7
3	7.05 s	104.8	7.04 s	104.8	7.02 s	104.7	7.01 s	104.7
4		181.8		181.9		181.8		181.5
5		161.4		161.4		161.4		161.3
6	$6.20 \mathrm{~d}(1.8)$	98.9	6.20 brs	99.0	6.18 brs	99.1	6.17 brs	99.3
7		164.4		164.4		164.3		164.3
8	6.56 d (1.8)	94.3	6.56 brs	94.3	6.53 brs	94.3	6.52 brs	94.5
9		157.4		157.4		157.4		157.5
10		103.8		103.8		103.6		103.7
1^{\prime}		125.2		125.3		125.2		125.4
2^{\prime}	7.30 brs	104.2	7.30 brs	104.3	7.30 brs	104.2	7.30 brs	104.2
3^{\prime}		153.0		152.9		152.9		152.9
4^{\prime}		139.4		139.9		139.4		139.8
5^{\prime}		153.0		152.9		152.9		152.9
6^{\prime}	7.30 brs	104.2	7.30 brs	104.3	7.30 brs	104.2	7.30 brs	104.2
$1^{\prime \prime}$		132.5		132.3		133.2		133.0
$2^{\prime \prime}$	7.15 d (8.4)	127.9	7.18 d (8.4)	127.8	6.92 brs	110.9	6.96 d (1.5)	111.0
$3^{\prime \prime}$	6.68 d (8.4)	114.4	6.67 d (8.4)	114.4		147.0		146.9
$4^{\prime \prime}$		156.2		156.2		145.4		145.4
$5^{\prime \prime}$	6.68 d (8.4)	114.4	6.67 d (8.4)	114.4	6.68 d (8.1)	114.7	6.68 d (8.0)	114.6
$6^{\prime \prime}$	7.15 d (8.4)	127.9	7.18 d (8.4)	127.8	6.74 d (8.1)	119.4	6.79 d (8.0, 1.5)	119.1
$7^{\prime \prime}$	4.77 brs	72.0	4.84 brs	71.5	4.78 brs	72.1	4.83 brs	71.6
$8^{\prime \prime}$	4.30 m	86.4	4.21 m	87.0	4.34 m	86.5	4.24 m	87.0
$9^{\prime \prime} \mathrm{a}$	3.71 m	60.1	3.63 m	60.4	3.71 m	60.1	3.63 m	60.4
$9^{\prime \prime} \mathrm{b}$	3.47 m		3.22 m		3.47 m		3.24 m	
OMe-3 ${ }^{\prime} / 5^{\prime}$	3.86 s	56.3	3.85 s	56.4	3.87 s	56.4	3.85 s	56.4
OMe-3' ${ }^{\prime \prime}$					3.73 s	55.5	3.72 s	55.5
$\Delta \delta_{\mathrm{C}^{\prime \prime}-\mathrm{C} 7^{\prime \prime}}$		14.4		15.5		14.4		15.4

${ }^{a}{ }^{1} \mathrm{H}$ NMR data were measured in DMSO- d_{6} at 300 MHz for 19 and 21, at 600 MHz for 20, and at 500 MHz for 22, respectively. Proton coupling constants (J) in Hz are given in parentheses. ${ }^{13} \mathrm{C}$ NMR data were measured in DMSO- d_{6} at 125 MHz for 19 and 22 and at 150 MHz for 20 and 21 , respectively. The assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC , and HMBC experiments.
$\mathrm{MeOH})\} ;{ }^{11}$ however, the optical rotation of $20\left\{[\alpha]^{20}{ }_{\mathrm{D}}-20.0\right.$ (c $0.02, \mathrm{MeOH})\}$ was opposite. The $7^{\prime \prime}, 8^{\prime \prime}$-threo configuration for 20 was verified by the ${ }^{1} \mathrm{H}$ NMR spectrum of the acetonide derivative (20a) showing $J_{7^{\prime \prime}, 8^{\prime \prime}} \approx 0.0 \mathrm{~Hz}$ (Supporting Information, Figure S229 and Table S2). ${ }^{16,31}$ The $7^{\prime \prime} S, 8^{\prime \prime} S$ configuration of $\mathbf{2 0}$ was also indicated by a typical coupled Cotton effect [negative at $353 \mathrm{~nm}(\Delta \varepsilon-0.07)$ and positive at 318 nm $(\Delta \varepsilon+0.08)]$ similar to that of 19 , as well as by the $\mathrm{Rh}_{2^{-}}$ $\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced positive Cotton effect at 362 nm (the E band) opposite that of 19 (Supporting Information, Figures S227 and S228).

Compound 21 exhibited spectroscopic data (Table 6 and Experimental Section) similar to those of salcolin B. ${ }^{12}$ However, the absolute configuration of salcolin B was not determined, and it was assigned to be tricin 4'-O-(erythro- β-guaiacylglyceryl) ether, ${ }^{12 c-e}$ having a positive optical rotation opposite that of $21\left\{[\alpha]_{\mathrm{D}}-18.3(c 0.03, \mathrm{MeOH})\right\}$. The $7^{\prime \prime}, 8^{\prime \prime}$-erythro configuration for 21 was substantiated by the $J_{7^{\prime \prime}, 8^{\prime \prime}}$ value $(9.0 \mathrm{~Hz})$ displayed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the acetonide derivative (21a). ${ }^{16,31}$ Although it was reported that the CD spectrum of salcolin A did not exhibit any Cotton effect presumably due to conformational mobility, ${ }^{12 \mathrm{~d}}$ the CD spectrum of 21 in MeCN
showed Cotton effects similar to those of 19 (Supporting Information, Figure S234). The similarity of the CD and $\mathrm{Rh}_{2^{-}}$ $\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD data between 21 and 19 (Supporting Information, Figure S235) indicated that these analogues had the same $7^{\prime \prime} R, 8^{\prime \prime} S$ configuration. Therefore, compound 21 was determined to be $(-)-\left(7^{\prime \prime} R, 8^{\prime \prime} S\right)-4^{\prime \prime}, 5,7$-trihydroxy- $3^{\prime}, 3^{\prime \prime}, 5^{\prime}$-tri-methoxy- $4^{\prime}, 8^{\prime \prime}$-oxyflavonolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol.

The spectroscopic data of 22 (Table 6 and Experimental Section) resembled those of salcolin $\mathrm{A},{ }^{12 \mathrm{a}, \mathrm{c}-\mathrm{e}}$ which was reassigned as tricin $4^{\prime}-O$-(threo- β-guaiacylglyceryl) ether, ${ }^{12 \mathrm{~b}}$ indicating that it was the $7^{\prime \prime}, 8^{\prime \prime}$-threo isomer of 21 . The $7^{\prime \prime}, 8^{\prime \prime}$-threo configuration for 22 was proved by the $J_{7^{\prime \prime}, 8^{\prime \prime}}$ value $(\approx 0.0 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of the acetonide derivative (22a). The $7^{\prime \prime} S, 8^{\prime \prime} S$ configuration of 22 was suggested by Cotton effects [negative at $348 \mathrm{~nm}(\Delta \varepsilon-0.06)$ and positive at $318 \mathrm{~nm}(\Delta \varepsilon+0.07)]$ in the CD spectrum and a positive Cotton effect at 366 nm (the E band) in the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectrum (Supporting Information, Figures S241 and S242).

The known compounds were identified by comparison of spectroscopic data with those reported in the literature as $(-)$ syringaresinol, ${ }^{26}(-)$-medioresinol, ${ }^{33}(-)-(7 R, 8 S)$-guaiacylglycerol, $(+)-(7 S, 8 S)$-guaiacylglycerol, ${ }^{16}$ tricin, ${ }^{34}$ 7-methoxytricin, ${ }^{35}$
$(-)-5^{\prime}$-methoxyisolariciresinol, ${ }^{36}(+)$-lyoniresinol, ${ }^{13}(+)$-brugunin $\mathrm{A},{ }^{37}(+)-(7 S, 8 S)$-guaiacylglycerol- β-vanillic acid ether, ${ }^{38}$ (+)-($\left.7^{\prime} E, 7 S, 8 R\right)-4,7,9,9^{\prime}$-tetrahydroxy- $3,3^{\prime}, 5^{\prime}$-trimethoxy- $8,4^{\prime}$ -oxyneolign- 7^{\prime}-ene, ${ }^{15} \quad(-)-\left(7^{\prime} E, 7 R, 8 S\right)-3,4,5^{\prime}$-trimethoxy- 4^{\prime}, 7 -epoxy- $8,3^{\prime}$-neolign- 7^{\prime}-ene- $9,9^{\prime}$-diol, $\left.{ }^{21 \mathrm{~b}}{ }^{(}+\right)-\left(7 S, 8 R, 8^{\prime} R\right)-5,5^{\prime}-$ dimethoxylariciresinol, ${ }^{39}$ and $(+)-5^{\prime}$-methoxylariciresinol. ${ }^{40}$

The isolation of $7,9^{\prime}: 7^{\prime}, 9$-diepoxy- $4,8^{\prime \prime}$-oxy- $8,8^{\prime}$-sesquineo-lignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol derivatives from the hydrolysate of hardwood lignin of Fraxinus mandshurica, ${ }^{7 a} 7,9^{\prime}: 7^{\prime}, 9$-diepoxy-4, $8^{\prime \prime}: 4^{\prime}, 8^{\prime \prime \prime}$ -bisoxy- $8,8^{\prime}$-dineolignan- $7^{\prime \prime}, 7^{\prime \prime \prime}, 9^{\prime \prime}, 9^{\prime \prime \prime}$-tetraol from the MeOH extract of dried leaves of Hedyotis lawsoniae, ${ }^{9 a}$ and $4^{\prime}, 8^{\prime \prime}$-oxyfla-vonolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol from the extract of Aegilops ovata ${ }^{41}$ was reported more than 25 years ago. However, the configuration of both the $7,9^{\prime}: 7^{\prime}, 9$-diepoxylignane and arylglycerol moieties in the molecules had not been substantiated due to some contrary and controversial data reported in the literature. By comparing the NMR and CD data of $2-4$ and $\mathbf{1 0 - 2 2}$, in combination with a literature survey, several points concerning the configuration of the aryl glycerol units in these compounds could be summarized. Our previous investigation indicated that coupling constants $\left(J_{7,8}\right)$ distinct for the deshielded benzylic proton (H-7) resonance in the ${ }^{1} \mathrm{H}$ NMR spectra of $8,4^{\prime}$-oxyneolignanes varied in different solvents due to possible dynamic conformational changes. ${ }^{16}$ Therefore, direct application of the $J_{7,8}$ values was ambiguous to differentiate erythro and threo $8,4^{\prime}$-oxyneolignans with the exception of aglycone acetonides ($J_{7,8}>7.0 \mathrm{~Hz}$ for erythro and $J_{7,8}<2.0 \mathrm{~Hz}$ for threo) and glycoside acetates ($J_{7,8} \leq 5.3 \mathrm{~Hz}$ for erythro and $J_{7,8} \geq 6.3 \mathrm{~Hz}$ for threo) in CDCl_{3}, as well as aglycones in $\mathrm{CDCl}_{3}\left(J_{7,8} \leq 5.0 \mathrm{~Hz}\right.$ for erythro and $J_{7,8} \geq 7.0 \mathrm{~Hz}$ for threo). ${ }^{16}$ In addition, the $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values eliminating the effect of systematic errors [$\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}($ threo $)>$ $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ (erythro)] were also applicable to differentiate threo and erythro aryl glycerols without substituent(s) at C-7 or/and C-8 of the glycerol moiety ${ }^{42}$ as well as the erythro and threo $8,4^{\prime}$ oxyneolignane isomers ${ }^{16}$ when the data were obtained in the same solvent. Inspection of the NMR data obtained in $\mathrm{Me}_{2} \mathrm{CO}-$ d_{6} and/or CDCl_{3} (Tables $1-5$) indicated that the coupling constants for the erythro aryl glycerol moieties ($J_{7^{\prime \prime}, 8^{\prime \prime}}$ for $\mathbf{4}, \mathbf{1 0}$, $12,14,16$, and 18; $J_{7^{\prime \prime \prime}, 8^{\prime \prime \prime}}$ for $\left.16 ;<4.0 \mathrm{~Hz}\right)$ were smaller than those for threo isomers ($J_{7,8}$ for 2, 3, and 3a; $J_{7^{\prime \prime}, 8^{\prime \prime}}$ for 11, 13, 15, and 17; and $J_{7^{\prime \prime \prime}, 8^{\prime \prime \prime}}$ for 17 and $18 ;>6.0 \mathrm{~Hz}$). Meanwhile, chemical shift differences for the erythro aryl glycerol moieties $\left(\Delta \delta_{\mathrm{C} 8^{\prime \prime}-\mathrm{C} 7^{\prime \prime}}\right.$ for $4,10,12,14,16$, and $18 ; \Delta \delta_{\mathrm{C} 8^{\prime \prime \prime}-\mathrm{C} 7^{\prime \prime \prime}}$ for $16 ;<14.6 \mathrm{ppm}$) were smaller than those for the threo moieties $\left(\Delta \delta_{\mathrm{C} 8^{\prime \prime}-\mathrm{C} 7^{\prime \prime}}\right.$ for 11, 13, 15, and 17; $\Delta \delta_{\mathrm{C} 8^{\prime \prime \prime}-\mathrm{C} 7^{\prime \prime \prime}}$ for 17 and 18; $>14.8 \mathrm{ppm}$). Although the $J_{7^{\prime \prime}, 8^{\prime \prime}}$ values for 19-22 in DMSO- d_{6} (Table 6) and pyridine- d_{5} were indistinguishable ${ }^{12 \mathrm{~b}}$ and it was reported that the data $\left(J_{7^{\prime \prime}, 8^{\prime \prime}}\right)$ in $\mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{CD}_{3} \mathrm{CN}$ for the erythro forms (19 and 21) were smaller than those for the threo forms (20 and 22), ${ }^{12}$ the $\Delta \delta_{\mathrm{C} 8^{\prime \prime}-\mathrm{C} 7^{\prime \prime}}$ values in the different solvents for the erythro analogues were consistently smaller than those for the threo derivatives. This was fully consistent with our previous reports, ${ }^{16,42}$ supporting the validity of direct application of $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values to distinguish threo and erythro arylglycerol units in the different neolignans. This was confirmed by the coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectra of the corresponding acetonide derivatives ($J_{7^{\prime \prime}, 8^{\prime \prime}}$ for 4a, 10a, 12a, 14a, 16a, 18a, 19a, and 21a and $J_{7^{\prime \prime \prime}, 8^{\prime \prime \prime}}$ for $16 a>9.0 \mathrm{~Hz}$, whereas $J_{7,8}$ for 2a, $J_{7^{\prime \prime}, 8^{\prime \prime}}$ for 11a, 13a, 15a, 17a, 20a, and 22a, and $J_{7^{\prime \prime \prime}, 8^{\prime \prime \prime}}$ for 17 a and $18 \mathrm{a}<2.0 \mathrm{~Hz}$).

Detailed analysis of the CD data of compounds $2,4,10-18$, and 10a-15a and our previous investigation, ${ }^{16}$ together with literature surveys, ${ }^{15,17,20}$ indicated that the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ Cotton effects at
around $235 \pm 5 \mathrm{~nm}$ could be validated for the configuration assignment at $\mathrm{C}-8$ (positive for $8 S$ and negative for $8 R$) of the aryl glycerol units in the aryl glycerols, neolignans ${ }^{15-17}$ including sesquineolignans ($\mathbf{1 0}-\mathbf{1 5) \text { , and dineolignans (} 1 6 - 1 8 \text {), although }}$ substitution of OH and/or OMe group(s) on the aryl ring(s) and acetonation at C-7 and C-9 of the glycerol units varied wavelengths and intensities of the Cotton effect bands in the CD spectra. For the sesquineolignans and dineolignans, the Cotton effects should be contributed by both the aryl glycerol and $7,9^{\prime}: 7^{\prime}, 9$-diepoxylignane chromaphores in the molecules. However, it was dominated by the aryl glycerol moiety. This was supported by comparison of the CD spectra of $10-18$ and acetonide derivatives (10a-15a) with those of aryl glycerols [(-)-(7R,8S)-guaiacylglycerol and $(+)-(7 S, 8 S)$-guaiacylglycerol $)]$ and $7,9^{\prime}: 7^{\prime}, 9$-diepoxy lignanes [9, (- -syringaresinol, and (- -medioresinol)] (Supporting Information, Figures S244-S247) as well as the related derivatives in the literature. ${ }^{20}$ Differing from those of 2, 4, and $\mathbf{1 0 - 1 8}$, the CD spectra of 19-22 exhibited typical coupled Cotton effects (negative at $355 \pm 10 \mathrm{~nm}$ and positive at $320 \pm 5 \mathrm{~nm}$, Supporting Information, Figure S248). Therefore, the exciton chirality method ${ }^{32}$ should be applicable to determine the configurations at $\mathrm{C}-8$ of the glycerol units in 19-22. A convenient bulkiness rule for the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD data (the E band) was demonstrated to be useful to determine the absolute configuration of chiral secondary and tertiary alcohols ${ }^{18}$ including the secondary benzylic alcohols. ${ }^{18 \mathrm{~b}}$ Application of the method to 2-4 and 10-22 indicated that the absolute configurations at C-7 of the glycerol units ($355 \pm 10 \mathrm{~nm}$, positive for $7 S$ and negative for $7 R$, predicted by the bulkiness rule) (Supporting Information, Figures S249-S250) were consistent with those elucidated by a combination of the NMR data (determining 7,8threo or erythro relative configurations) and the CD data (predicting C-8 configurations). This was supported further by measurement of the $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD spectra of $(-)$ syringaresinol and tricin (Supporting Information, Figures S249-S250), which did not show any Cotton effect.

The inhibitory effects of the isolates against nitric oxide (NO) production in mouse peritoneal macrophages were examined. Compounds 20 and 22 inhibited NO elevation by $84.2 \pm 5.9 \%$ and $71.7 \pm 1.0 \%$, respectively, at a concentration of $10 \mu \mathrm{M}$, while the positive control dexamethasone gave an inhibitory rate of 61.6 $\pm 1.3 \%$ at the same concentration. The other compounds showed inhibitory rates less than 30%. The protective activities of the compounds against neurotoxicity induced by serum deprivation in PC12 cells were investigated by the MTT method. The results showed that serum deprivation induced significant inhibition of MTT reduction, at a concentration of $10 \mu \mathrm{M}$. Compounds 19,20 , and 22 increased cell viability from $80.7 \pm 2.8 \%$ to $91.6 \pm 6.4 \%$, $107.2 \pm 8.0 \%$, and $97.6 \pm 8.5 \%$, respectively, indicating that they may be effective in neurodegenerative disorders. The isolates were also assessed for their activities against HIV-1 replication, ${ }^{43} \mathrm{Fe}^{2+}$ -cystine-induced rat liver microsomal lipid peroxidation, ${ }^{44}$ and DL-galactosamine-induced WB-F344 cell damage ${ }^{45}$ as well as cytotoxicity against several human cancer cell lines, ${ }^{46}$ but were inactive at a concentration of $10 \mu \mathrm{M}$.

■ EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were measured on a Rudolph Research Autopol III automatic polarimeter. UV spectra were measured on a Cary 300 spectrometer. CD spectra were recorded on a JASCO J-815 CD spectrometer. IR spectra were
recorded on a Nicolet 5700 FT-IR microscope instrument (FT-IR microscope transmission). NMR spectra were obtained at 300, 500, or 600 MHz for ${ }^{1} \mathrm{H}$ and 125 or 150 MHz for ${ }^{13} \mathrm{C}$, respectively, on Varian Mecury- 300 MHz or INOVA 500 MHz or SYS 600 MHz spectrometers with solvent peaks being used as references. ESIMS data were measured with a Q-Trap LC/MS/MS (Turbo Ionspray Source) spectrometer. HRESIMS data were measured using an Agilent Technologies 6520 Accurate Mass Q-ToF LC/MS spectrometer. Column chromatography was performed using silica gel (200-300 mesh, Qingdao Marine Chemical Inc., China) and Sephadex LH-20 (Pharmacia Biotech AB, Uppsala Sweden). HPLC separation was performed on an instrument consisting of a Waters 600 controller, a Waters 600 pump, and a Waters 2487 dual λ absorbance detector with an Alltima $(250 \times 10 \mathrm{~mm})$ preparative column packed with $\mathrm{C}_{18}(5 \mu \mathrm{~m})$. TLC was carried out on precoated silica gel GF_{254} plates. Spots were visualized under UV light (254 or 356 nm) or by spraying with $7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in $95 \% \mathrm{EtOH}$ followed by heating.

Plant Material. The skin-removed stems of S. affinis were collected at Pingle Town, Sichuang Province, China, in August 2008. Plant identification was verified by Dr. Yan Ren (Chengdu University of TCM, Sichuan 610075, China). A voucher specimen (no. ID-S-2326) was deposited at the Herbarium of the Department of Medicinal Plants, Institute of Materia Medica, Beijing 100050, China.

Extraction and Isolation. Air-dried slices of the skin-removed stem of S. affinis (6 kg) were powdered and extracted with $95 \% \mathrm{EtOH}$ $(3 \times 40 \mathrm{~L})$ at rt for $3 \times 72 \mathrm{~h}$. The EtOH extract was evaporated under reduced pressure to yield a dark brown residue $(330 \mathrm{~g})$. The residue was suspended in $\mathrm{H}_{2} \mathrm{O}(2500 \mathrm{~mL})$ and then partitioned with $\mathrm{EtOAc}(6 \times$ 2500 mL). After removing the solvent, the EtOAc fraction (120 g) was applied to a silica gel column. Successive elution with a gradient of increasing acetone $(0-100 \%)$ in petroleum ether afforded 10 fractions $\left(\mathrm{F}_{1}-\mathrm{F}_{10}\right)$ based on TLC analysis. $\mathrm{F}_{5}(8.5 \mathrm{~g})$ was subjected to RP flash $\mathrm{CC}\left(40-95 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to give subfractions $\mathrm{F}_{5-1}-\mathrm{F}_{5-5}$. Separation of $\mathrm{F}_{5-2}(1.1 \mathrm{~g})$ with Sephadex LH-20 (petroleum ether- $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}, 5: 5: 1)$ and RP semipreparative HPLC ($50 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$), successively, yielded $9(4 \mathrm{mg}) . \mathrm{F}_{5-3}(4.57 \mathrm{~g})$ was fractioned via silica gel (30-100\% EtOAc in petroleum ether) and Sephadex LH-20 (petroleum ether $-\mathrm{CHCl}_{3}-\mathrm{MeOH}$, 5:5:1) followed by RP semipreparative HPLC $\left(55 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ purification to yield $5(8 \mathrm{mg})$ and $6(11 \mathrm{mg})$. Eluting with a step gradient of $30-95 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}, \mathrm{F}_{6}$ $(21.0 \mathrm{~g})$ was separated by flash chromatography over MCI gel, to give subfractions $\mathrm{F}_{6-1}-\mathrm{F}_{6-5} . \mathrm{F}_{6-2}(6.0 \mathrm{~g})$ was purified via silica gel $(5-40 \%$ acetone in $\left.\mathrm{CHCl}_{3}\right)$ followed by RP semipreparative $\mathrm{HPLC}(40 \% \mathrm{MeOH}$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to yield $\mathbf{1}(6 \mathrm{mg}), \mathbf{2}(6 \mathrm{mg}), \mathbf{3}(7 \mathrm{mg}), 7(87 \mathrm{mg})$, and $\mathbf{8}(5 \mathrm{mg})$. $\mathrm{F}_{6-3}(2.0 \mathrm{~g})$ was subjected to Sephadex LH-20, successively using petroleum ether $-\mathrm{CHCl}_{3}-\mathrm{MeOH}(2: 2: 1)$ and $\mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1)$ as mobile phases, to afford $19(260 \mathrm{mg}), 20(145 \mathrm{mg}), 21(21 \mathrm{mg})$, and $22(18 \mathrm{mg}) . \mathrm{F}_{6-4}(4.6 \mathrm{~g})$ was fractioned by RP flash chromatography $\left(30-70 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to give $\mathrm{F}_{6-4-1}-\mathrm{F}_{6-4-6} . \mathrm{F}_{6-4-2}(0.5 \mathrm{~g})$ and F_{6-4-3} (0.7 g) were subjected separately to RP semipreparative HPLC (55% MeOH in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to yield $\mathbf{1 4}(150 \mathrm{mg})$ and $\mathbf{1 5}(147 \mathrm{mg})$ from F_{6-4-2} and $12(217 \mathrm{mg})$ and $13(150 \mathrm{mg})$ from $\mathrm{F}_{6-4-3} . \mathrm{F}_{6-4-4}(1.2 \mathrm{~g})$ was separated successively by chromatography over Sephadex LH-20 $\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}, 1: 1)$ and RP semipreparative $\mathrm{HPLC}\left(60 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to afford $\mathbf{1 0}(146.0 \mathrm{mg}), \mathbf{1 1}(85 \mathrm{mg})$, and $\mathbf{1 7}(3 \mathrm{mg})$. Separation of F_{6-4-4} (0.6 g) by RP semipreparative HPLC $\left(45 \% \mathrm{CH}_{3} \mathrm{CN}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ yielded 4 $(5 \mathrm{mg}), \mathbf{1 6}(150 \mathrm{mg})$, and $\mathbf{1 8}(180 \mathrm{mg})$.
(+)-(7'S,8S, 8'S)-3',4-Dihydroxy-2',3,4',5-tetramethoxy-6',9-epoxy-2,7'-cyclolignan-9'-ol (1): white, amorphous powder; $[\alpha]^{20}+43.3(c$ $0.12, \mathrm{MeOH})$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 207$ (4.28), 235 (3.68), 282 (3.24) nm; CD $(\mathrm{MeOH}) 226(\Delta \varepsilon-2.23), 247(\Delta \varepsilon+0.78) \mathrm{nm}, 284$ $(\Delta \varepsilon-1.03) \mathrm{nm}$; IR $\nu_{\max } 3432,3246,2963,2935,2897,1612,1493$, 1451, 1437, 1305, 1235, 1195, 1125, 1091, 1033, 919, 872, $809 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (MeOH- $\left.d_{4}, 500 \mathrm{MHz}\right)$ data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (MeOH- d_{4},
$125 \mathrm{MHz})$ data, see Table 2; (+)-ESIMS $m / z 419[\mathrm{M}+\mathrm{H}]^{+}, 441[\mathrm{M}+$ $\mathrm{Na}]^{+}, 457[\mathrm{M}+\mathrm{K}]^{+} ;(+)$-HRESIMS $m / z 441.1532[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{Na}, 441.1520\right)$.
(+)-(7S,8S)-1',4-Dihydroxy-3, $3^{\prime}, 5^{\prime}$-trimethoxy- $7^{\prime}, 8^{\prime}, 9^{\prime}$-trinor-8, 4^{\prime} -oxyneolignan-7,9-diol (2): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}+3.5(c$ $0.10, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 204$ (4.30), 234 (3.64), 280 (3.10) nm; CD $(\mathrm{MeOH}) 207(\Delta \varepsilon+1.32), 224.5(\Delta \varepsilon+0.20), 237(\Delta \varepsilon$ $+0.41) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 319(\Delta \varepsilon-0.01)$, $329(\Delta \varepsilon-0.04), 351(\Delta \varepsilon+0.08) \mathrm{nm}$; IR $\nu_{\max } 3405,2939,2849,1603$, 1512, 1481, 1434, 1368, 1274, 1217, 1032, 996, 821, $632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right)$ data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125\right.$ $\mathrm{MHz})$ data, see Table $2 ;(+)$-ESIMS $m / z 389[\mathrm{M}+\mathrm{Na}]^{+}, 405[\mathrm{M}+$ $\mathrm{K}]^{+}, 755[2 \mathrm{M}+\mathrm{Na}]^{+} ;(+)-\mathrm{HRESIMS} m / z 389.1208[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{Na}, 389.1207$).
(+)-(7S,8S)-4-Hydroxy-3,3', 5' -trimethoxy-8', 9^{\prime}-dinor-8, 4^{\prime}-oxyneo-lignan-7,9-diol-7'-oic acid (3): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}+13.4$ (c 0.13, MeOH); UV (MeOH) $\lambda_{\max }(\log \varepsilon) 204$ (4.15), 256 (3.37), 284 (3.08) nm; CD $(\mathrm{MeOH}) 227(\Delta \varepsilon-0.22), 258(\Delta \varepsilon+0.50) \mathrm{nm} ; \mathrm{Rh}_{2^{-}}$ $\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 319.5(\Delta \varepsilon-0.15), 359(\Delta \varepsilon+0.06)$, $429(\Delta \varepsilon-0.01) \mathrm{nm}$; IR $\nu_{\text {max }} 3423,2941,2845,1564,1519,1459,1404$, 1224, 1124, 1031, 789, $767 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeOH}-d_{4}, 500 \mathrm{MHz}$) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{MeOH}-d_{4}, 125 \mathrm{MHz}$) data, see Table 2; ESIMS $m / z 417[\mathrm{M}+\mathrm{Na}]^{+}, 393[\mathrm{M}-\mathrm{H}]^{-} ;(+)$-HRESIMS $m / z 417.1164$ $[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{9} \mathrm{Na}, 417.1156\right)$.

Methylation of 3. A solution of compound $3(2.0 \mathrm{mg})$ in dry acetone $(3 \mathrm{~mL})$ was treated with $\mathrm{NaHCO}_{3}(1.5 \mathrm{mg})$ and $\mathrm{CH}_{3} \mathrm{I}(2.5 \mathrm{mg})$ at $50^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was evaporated under reduced pressure to give a residue. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$. The EtOAc extract was evaporated, and then purified by preparative TLC using $\mathrm{CHCl}_{3}-\mathrm{MeOH}(15: 1)$ to afford 3a $(1.3 \mathrm{mg})$: white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+2.7(c 0.10, \mathrm{MeOH})$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 202$ (4.31), 217 (4.01), 270 (3.55) nm; CD $(\mathrm{MeOH}) 243(\Delta \varepsilon+0.26), 262(\Delta \varepsilon+0.41) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4^{-}}$ induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 320(\Delta \varepsilon+0.06), 356(\Delta \varepsilon+0.02) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{MeOH}-d_{4}, 600 \mathrm{MHz}$) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (MeOH- $d_{4}, 150$ $\mathrm{MHz})$ data, see Table 2; $(+)$-ESIMS $m / z 431[\mathrm{M}+\mathrm{Na}]^{+}$.
(-)-(7R,8S, $\left.7^{\prime \prime} S, 8^{\prime \prime} R\right)-3,3^{\prime \prime}, 5,5^{\prime}$-Tetramethoxy-4 $4^{\prime \prime}$-hydroxy-4', 7-epoxy$8^{\prime}, 9^{\prime}$-dinor-4, $8^{\prime \prime}$-oxy-8, 3^{\prime}-sesquineolignan- $7^{\prime \prime}, 9,9^{\prime \prime}$-triol-7'-al (4): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}-3.0\left(c 0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }$ $(\log \varepsilon) 205$ (4.22), 235 (3.77), 286 (3.44), 310 (3.35) nm; CD (MeOH) $212(\Delta \varepsilon+1.41), 236(\Delta \varepsilon-0.47), 280(\Delta \varepsilon+0.03), 295(\Delta \varepsilon-0.15), 320$ $(\Delta \varepsilon+0.06) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 313.5(\Delta \varepsilon$ $+0.01), 327.5(\Delta \varepsilon-0.02), 347.5(\Delta \varepsilon+0.06), 397(\Delta \varepsilon+0.01) \mathrm{nm}$; IR $\nu_{\max } 3429,2939,2844,1680,1592,1514,1462,1426,1325,1225,1127$, 1031, 949, $830 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right)$ data, see Table 3; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right)$ data, see Table 4; (+)-ESIMS m/z 579 $[\mathrm{M}+\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 555[\mathrm{M}-\mathrm{H}]^{-} ;(+)$-HRESIMS m / z $579.1845[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{11} \mathrm{Na}, 579.1837\right)$.
(-)-(7R,8S, $\left.7^{\prime} E\right)-3,4,5,5^{\prime}$-Tetramethoxy-4',7-epoxy-8,3'-neolign-7'-ene-9,9'-diol (5): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-7.8$ (c 0.10, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 206$ (4.26), 275 (3.71) nm; CD $(\mathrm{MeOH}) 203(\Delta \varepsilon+7.58), 220(\Delta \varepsilon-0.37), 234(\Delta \varepsilon+3.76), 272(\Delta \varepsilon$ -2.89) nm; IR $\nu_{\max } 3397,2937,1595,1499,1463,1420,1330,1237$, 1126, 965, 834, $616 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right)$ data, see Table 1; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right)$ data, see Table 2; (+)ESIMS $m / z 425[\mathrm{M}+\mathrm{Na}]^{+}, 441[\mathrm{M}+\mathrm{K}]^{+} ;(+)$-HRESIMS m / z 403.1741 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{7} 403.1751$).
$(+)-\left(7 S, 8 R, 7^{\prime} E\right)-4$-Hydroxy-3,5'-dimethoxy-4',7-epoxy-8,3'-neolign-7^{\prime}-ene-9,9'-diol 9^{\prime}-ethyl ether (6): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}$ $+11.8(c 0.10, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 204$ (4.16), 278 (3.67) nm; CD $(\mathrm{MeOH}) 211(\Delta \varepsilon+2.82), 238(\Delta \varepsilon-0.88), 261(\Delta \varepsilon$ $+1.74)$, $282.5(\Delta \varepsilon+3.30) \mathrm{nm}$; IR $\nu_{\max } 3365,2970,2928,2852,1603$, 1517, 1497, 1464, 1331, 1274, 1212, 1144, 1033, 967, 856, $816 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right)$ data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right.$,
$125 \mathrm{MHz})$ data, see Table $2 ;(+)$-ESIMS $m / z 409[\mathrm{M}+\mathrm{Na}]^{+}, 425[\mathrm{M}$ $+\mathrm{K}]^{+} ;(+)-$HRESIMS $\mathrm{m} / \mathrm{z} 409.1622[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}, 409.1622$).
(-)-($\left.7^{\prime} \mathrm{S}, 8 \mathrm{~B}, 8^{\prime} R\right)-4,4^{\prime}$-Dihydroxy-3,3',5,5'-tetramethoxy-7',9-epoxy-lignan-9'-ol-7-one (7): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}-1.5$ (c 0.20, $\mathrm{MeCN}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 208$ (4.18), 233 (3.73), 303 (3.47) nm; CD (MeOH) $209(\Delta \varepsilon-0.36), 225(\Delta \varepsilon-0.55), 255(\Delta \varepsilon$ $+0.27), 273(\Delta \varepsilon+0.05), 286(\Delta \varepsilon+0.14), 324(\Delta \varepsilon-0.16) \mathrm{nm}$; IR $\nu_{\max }$ $3473,3285,2940,1661,1611,1518,1463,1425,1325,1218,1116,1033$, $842,715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{MeOH}-d_{4}, 500 \mathrm{MHz}$) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (MeOH- $d_{4}, 125 \mathrm{MHz}$) data, see Table 2; (+)-ESIMS $m / z 435[\mathrm{M}$ $+\mathrm{H}]^{+}, 457[\mathrm{M}+\mathrm{Na}]^{+}, 473[\mathrm{M}+\mathrm{K}]^{+} ;(-)$-ESIMS $m / z 433[\mathrm{M}-$ $\mathrm{H}]^{-} ;(+)-$HRESIMS $m / z 457.1472[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{Na}, 457.1469\right)$.
(+)-(7R, $\left.7^{\prime} R, 8 S, 8^{\prime} S\right)-4^{\prime}$-Hydroxy-3,3',4,5,5'-pentamethoxy-7,7'-epox-ylignan-9, 9^{\prime}-diol (8): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+25.5$ (c 0.04, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 207$ (4.48), 241 (3.72), 277 (3.03) nm; CD $(\mathrm{MeOH}) 207(\Delta \varepsilon-16.55), 221.5(\Delta \varepsilon+0.87), 226$ $(\Delta \varepsilon+0.28), 243(\Delta \varepsilon+10.94), 277(\Delta \varepsilon-0.56) \mathrm{nm}$; IR $\nu_{\max } 3381$, 2936, 1595, 1514, 1462, 1424, 1329, 1236, 1124, 834, $718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right)$ data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right.$, 125 MHz) data, see Table 2; (+)-ESIMS m/z $473[\mathrm{M}+\mathrm{Na}]^{+}, 489$ $[\mathrm{M}+\mathrm{K}]^{+} ;(+)$-HRESIMS $m / z 473.1784[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{Na}, 473.1782$).
(-)-(7R, $\left.7^{\prime} R, 8 S, 8^{\prime} S\right)-4^{\prime}$-Hydroxy-3,3',4,5,5'-pentamethoxy-7, $9^{\prime}: 7^{\prime}, 9-$ diepoxylignane (9): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}-45.8$ (c 0.03, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 207$ (4.27), 236 (3.55), 272 (2.86) nm; CD (MeCN) $214(\Delta \varepsilon-3.79), 230.5(\Delta \varepsilon-0.62), 239$ $(\Delta \varepsilon-0.86), 254(\Delta \varepsilon+0.09), 274(\Delta \varepsilon-0.72) \mathrm{nm}$; IR $\nu_{\max } 3370,2935$, 2850, 1593, 1510, 1460, 1421, 1329, 1234, 1122, 1005, 830, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 600 \mathrm{MHz}\right)$ data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right.$, 125 MHz) data, see Table 2; (+)-EIMS $m / z 432[\mathrm{M}]^{+} ;(+)$-HRESIMS $m / z 455.1677[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{Na}, 455.1676\right)$.
(-)-(7R, $\left.7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}$-Dihydroxy-3,3', $3^{\prime \prime}, 5$-tetrameth-oxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy-4, $8^{\prime \prime}$-oxy-8, 8^{\prime}-sesquineolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (10): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}-4.0(c 0.10, \mathrm{MeCN})$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 204$ (4.35), 233 (3.71), 280 (3.12) nm; CD (MeCN) 207 $(\Delta \varepsilon-0.19), 215.5(\Delta \varepsilon-0.98), 225(\Delta \varepsilon+0.25) \mathrm{nm}, 230(\Delta \varepsilon-0.10)$, $238.5(\Delta \varepsilon+1.08), 247.5(\Delta \varepsilon-0.10), 267(\Delta \varepsilon+0.80), 281(\Delta \varepsilon$ $-0.33), 293(\Delta \varepsilon-0.42) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $327(\Delta \varepsilon-0.07), 340(\Delta \varepsilon-0.01), 353(\Delta \varepsilon-0.04) \mathrm{nm}$; IR $\nu_{\max } 3421$, 2939, 1593, 1517, 1463, 1426, 1274, 1232, 1125, 1033, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right.$ and $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ data, see Table 3; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right.$ and $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ data, see Table 4; (+)-ESIMS $m / z 607[\mathrm{M}+\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 583[\mathrm{M}-$ $\mathrm{H}]^{-} ;(+)$-HRESIMS $m / z 607.2155[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{Na}, 607.2150\right)$.
(-)-(7R, $\left.7^{\prime} R, 7^{\prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}$-Dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5$-tetramethoxy-7,9':7',9-diepoxy-4, $8^{\prime \prime}$-oxy-8, 8^{\prime}-sesquineolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (11): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}-4.8(c 0.10, \mathrm{MeCN})$; UV $(\mathrm{MeOH}) \lambda_{\max }$ $(\log \varepsilon) 204$ (4.33), 232 (3.73), $280(3.20) \mathrm{nm} ; \mathrm{CD}(\mathrm{MeCN}) 208$ $(\Delta \varepsilon-1.61), 214.5(\Delta \varepsilon-0.30), 218.5(\Delta \varepsilon-0.69) \mathrm{nm}, 226(\Delta \varepsilon+0.11)$, $239.5(\Delta \varepsilon+0.58), 249(\Delta \varepsilon-0.36), 266.5(\Delta \varepsilon+0.85), 279(\Delta \varepsilon-0.16)$, $291(\Delta \varepsilon-0.55) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 336$ $(\Delta \varepsilon-0.01), 348(\Delta \varepsilon+0.06) \mathrm{nm}$; IR $v_{\max } 3447,2940,1593,1517$, 1463, 1426, 1274, 1233, 1124, 1033, $824 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-d_{6}$, 500 MHz and $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ data, see Table 3; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-\right.$ $d_{6}, 125 \mathrm{MHz}$ and $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) data, see Table 4; $(+)$-ESIMS m / z $607[\mathrm{M}+\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 583[\mathrm{M}-\mathrm{H}]^{-} ;(+)$-HRESIMS m / z $607.2143[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{Na}, 607.2150\right)$.
(-)-(7R, $\left.7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}$-Dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5,5^{\prime}$-penta-methoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy- $4,8^{\prime \prime}$-oxy- $8,8^{\prime}$-sesquineolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (12): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-3.0$ (c 0.05, MeCN); UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 205(4.38), 235(3.71), 277$ (3.09) nm; CD
$(\mathrm{MeCN}) 214.5(\Delta \varepsilon-1.44), 223(\Delta \varepsilon+0.54) \mathrm{nm}, 230(\Delta \varepsilon-1.12), 240$ $(\Delta \varepsilon+0.77), 251(\Delta \varepsilon-0.24), 269(\Delta \varepsilon+0.78), 279(\Delta \varepsilon-0.24), 288$ $(\Delta \varepsilon-0.21) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 334(\Delta \varepsilon$ $+0.03), 351(\Delta \varepsilon-0.04), 364(\Delta \varepsilon-0.02), 374(\Delta \varepsilon-0.03) \mathrm{nm} ; \operatorname{IR} v_{\max }$ 3303, 2962, 1593, 1518, 1463, 1262, 1224, 1113, 1028, $803 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right.$ and $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ data, see Table 3; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right.$ and $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ data, see Table 4; (+)-ESIMS $m / z 637[\mathrm{M}+\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 613[\mathrm{M}-$ $\mathrm{H}]^{-} ;(+)$-HRESIMS $m / z 637.2263[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{12} \mathrm{Na}, 637.2255\right)$.
(-)-(7R, $\left.7^{\prime} R, 7^{\prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}$-Dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5,5^{\prime}$-pentameth-oxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy-4, $8^{\prime \prime}$-oxy-8, 8^{\prime}-sesquineolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (13): white, amorphous powder; $[\alpha]^{20}-6.0(c 0.10, \mathrm{MeCN})$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 206(4.21), 238(3.50), 277(2.81) \mathrm{nm} ; \mathrm{CD}(\mathrm{MeCN}) 214.5$ $(\Delta \varepsilon-0.95), 223.5(\Delta \varepsilon+0.86), 231(\Delta \varepsilon-0.17), 238.5(\Delta \varepsilon+0.66)$, $246(\Delta \varepsilon-0.16), 255(\Delta \varepsilon+0.54), 260(\Delta \varepsilon+0.40), 267(\Delta \varepsilon+0.77)$, $278(\Delta \varepsilon-0.19), 290.5(\Delta \varepsilon-0.30) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 336(\Delta \varepsilon-0.11), 353(\Delta \varepsilon+0.09), 394(\Delta \varepsilon+0.01) \mathrm{nm} ;$ IR $\nu_{\max } 3450,2940,2842,1593,1518,1463,1425,1368,1328,1273,1221$, 1121, 1059, 1033, 826, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right.$ and $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ data, see Table 3; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right.$ and $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) data, see Table 4; (+)-ESIMS $m / z 637[\mathrm{M}+$ $\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 613[\mathrm{M}-\mathrm{H}]^{-} ;(+)$-HRESIMS $m / z 637.2257$ $[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{12} \mathrm{Na}, 637.2255\right)$.
(-)-(7R, $\left.7^{\prime} R, 7^{\prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}$-Dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5,5^{\prime}, 5^{\prime \prime}$-hexa-methoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy- $4,8^{\prime \prime}$-oxy- $8,8^{\prime}$-sesquineolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (14): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}-3.0(c 0.05, \mathrm{MeCN})$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 206$ (4.29), 238 (3.59), 277 (2.93) nm; CD (MeCN) 213 $(\Delta \varepsilon-2.61), 223(\Delta \varepsilon+0.08), 229.5(\Delta \varepsilon-0.58), 239(\Delta \varepsilon+1.11), 249$ ($\Delta \varepsilon-0.33), 269(\Delta \varepsilon+0.53), 279(\Delta \varepsilon-0.17), 290.5(\Delta \varepsilon-0.15) \mathrm{nm} ;$ $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 335.5(\Delta \varepsilon-0.05), 344$ $(\Delta \varepsilon-0.01), 353.5(\Delta \varepsilon-0.03), 364(\Delta \varepsilon-0.01) \mathrm{nm}$; IR $\nu_{\max } 3346$, 2939, 2841, 1614, 1519, 1462, 1425, 1326, 1218, 1118, 829, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}$ and $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ data, see Table 3; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right.$ and $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ data, see Table 4; (+)-ESIMS $m / z 667[\mathrm{M}+\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 643[\mathrm{M}-$ $\mathrm{H}]^{-} ;(+)$-HRESIMS $m / z 667.2365[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{13} \mathrm{Na}$, 637.2361).
(-)-(7R, $\left.7^{\prime} R, 7^{\prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S\right)-4^{\prime}, 4^{\prime \prime}$-Dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 5,5^{\prime}, 5^{\prime \prime}$-hexa-methoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy-4, $8^{\prime \prime}$-oxy-8, 8^{\prime}-sesquineolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (15): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-5.0(c 0.10, \mathrm{MeCN})$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 207$ (4.22), 240 (3.47), 274 (2.65) nm; CD (MeCN) 209.5 $(\Delta \varepsilon-2.98), 223(\Delta \varepsilon+1.09), 230.5(\Delta \varepsilon-0.35), 237.5(\Delta \varepsilon+0.97), 244$ $(\Delta \varepsilon+0.31), 253.5(\Delta \varepsilon+0.70), 261.5(\Delta \varepsilon+0.07), 268.5(\Delta \varepsilon+0.62)$, $283(\Delta \varepsilon-0.27), 296(\Delta \varepsilon-0.37) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 335(\Delta \varepsilon-0.12), 354(\Delta \varepsilon+0.07), 383(\Delta \varepsilon+0.05) \mathrm{nm} ;$ IR $\nu_{\max } 3441,2939,2842,1613,1519,1462,1326,1218,1119,830$, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}\right.$ and $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ data, see Table 3; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right.$ and $\mathrm{CDCl}_{3}, 125$ MHz) data, see Table 4; (+)-ESIMS $m / z 667[\mathrm{M}+\mathrm{Na}]^{+}$; (-)-ESIMS $m / z 643[\mathrm{M}-\mathrm{H}]^{-} ;(+)-$HRESIMS $m / z 667.2368[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{13} \mathrm{Na}, 637.2361$).
(+)-(7R, $\left.7^{\prime} R, 7^{\prime \prime} R, 7^{\prime \prime \prime} R, 8 S, 8^{\prime} S, 8^{\prime \prime} S, 8^{\prime \prime \prime} S\right)-4^{\prime \prime}, 4^{\prime \prime \prime}$-Dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 3^{\prime \prime \prime}$, 5,5'-hexamethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy-4, $8^{\prime \prime}: 4^{\prime}, 8^{\prime \prime \prime}$-bisoxy-8, 8^{\prime}-dineolignan$7^{\prime \prime}, 7^{\prime \prime \prime}, 9^{\prime \prime}, 9^{\prime \prime \prime}$-tetraol (16): white, amorphous powder; $[\alpha]_{\mathrm{D}}^{20}+1.2$ (c 0.25, MeCN); UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 204$ (4.44), 232 (3.81), 278 (3.20) nm; CD (MeCN) $209(\Delta \varepsilon-1.31), 215(\Delta \varepsilon-1.71), 234$ $(\Delta \varepsilon+0.94), 249(\Delta \varepsilon-0.93), 272(\Delta \varepsilon+0.38), 287(\Delta \varepsilon-0.46) \mathrm{nm} ;$ $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 329(\Delta \varepsilon+0.03), 351$ $(\Delta \varepsilon-0.07), 378(\Delta \varepsilon-0.02) \mathrm{nm}$; IR $\nu_{\max } 3442,2970,2938,1592$, 1517, 1463, 1423, 1231, 1125, 1035, 825, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{Me}_{2} \mathrm{CO}-\right.$ $\left.d_{6}, 300 \mathrm{MHz}\right)$ data, see Table $5 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right)$ data, see Table $5 ;(+)$-ESIMS $m / z 833[\mathrm{M}+\mathrm{Na}]^{+} ;(-)$-ESIMS $m / z 809$
[$\mathrm{M}-\mathrm{H}]^{-} ;(+)$-HRESIMS $m / z 833.2984[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{16} \mathrm{Na}, 833.2991\right)$.
(+)-($\left.7 R, 7^{\prime} R, 7^{\prime \prime} S, 7^{\prime \prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S, 8^{\prime \prime \prime} S\right)-4^{\prime \prime}, 4^{\prime \prime \prime}-$ Dihydroxy-3, $3^{\prime}, 3^{\prime \prime}, 3^{\prime \prime \prime}$, 5, 5^{\prime}-hexamethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy- $4,8^{\prime \prime}: 4^{\prime}, 8^{\prime \prime \prime}$-bisoxy- $8,8^{\prime}$-dineolignan$7^{\prime \prime}, 7^{\prime \prime \prime}, 9^{\prime \prime}, 9^{\prime \prime}$-tetraol (17): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+1.2(c$ $0.10, \mathrm{MeCN})$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 205$ (4.39), 234 (3.77), 278 (3.20) nm; CD (MeCN) $210.5(\Delta \varepsilon+0.24), 219(\Delta \varepsilon-1.66), 234.5(\Delta \varepsilon$ $+1.14), 254(\Delta \varepsilon-0.46), 266.5(\Delta \varepsilon+0.60), 278(\Delta \varepsilon-0.44) \mathrm{nm} ;$ $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced CD $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 350(\Delta \varepsilon+0.13)$, $385(\Delta \varepsilon$ $+0.02) \mathrm{nm}$; IR $v_{\text {max }} 3354,2924,2851,1593,1516,1463,1423,1273$, 1231, 1124, 1033, $825 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-d_{6}$, 500 MHz) data, see Table 5; ${ }^{13} \mathrm{CNMR}\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}\right)$ data, see Table 5; (+)-ESIMS $m / z 833[\mathrm{M}+\mathrm{Na}]^{+}$; (-)-ESIMS $m / z 809[\mathrm{M}-\mathrm{H}]^{-}$; (+)-HRESIMS $m / z 833.3001[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{16} \mathrm{Na}, 833.2991\right)$.
(+)-($\left.7 R, 7^{\prime} R, 7^{\prime \prime} R, 7^{\prime \prime \prime} S, 8 S, 8^{\prime} S, 8^{\prime \prime} S, 8^{\prime \prime \prime} S\right)-4^{\prime \prime}, 4^{\prime \prime \prime}-D i h y d r o x y-3,3^{\prime}, 3^{\prime \prime}, 3^{\prime \prime \prime}$, 5, 5^{\prime}-hexamethoxy-7, $9^{\prime}: 7^{\prime}, 9$-diepoxy-4, $8^{\prime \prime}: 4^{\prime}, 8^{\prime \prime \prime}$-bisoxy-8, 8^{\prime}-dineolignan$7^{\prime \prime}, 7^{\prime \prime \prime}, 9^{\prime \prime}, 9^{\prime \prime \prime}$-tetraol (18): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}+2.1(c$ $0.10, \mathrm{MeCN}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 204$ (4.43), 233 (3.79), 278 (3.18) nm; CD (MeCN) $208(\Delta \varepsilon-0.24), 217(\Delta \varepsilon-0.85), 235(\Delta \varepsilon$ $+0.67)$, $245(\Delta \varepsilon+0.33)$, $257(\Delta \varepsilon-0.68), 269(\Delta \varepsilon+0.30), 283$ $(\Delta \varepsilon-0.15) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 349(\Delta \varepsilon$ $+0.04)$; IR $v_{\text {max }} 3476,2933,2850,1592,1517,1463,1423,1273,1231$, 1124, 1032, $824,703 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}$) data, see Table 5; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-d_{6}$, 125 MHz) data, see Table 5; (+)-ESIMS $m / z 833[\mathrm{M}+\mathrm{Na}]^{+}$; (-)-ESIMS $m / z 809[\mathrm{M}-\mathrm{H}]^{-}$; (+)-HRESIMS $\mathrm{m} / z 833.2997[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{16} \mathrm{Na}, 833.2991\right)$.

Alkali Hydrolysis of $\mathbf{1 0 - 1 8}$. To a solution of compound $\mathbf{1 0}$ (8.0 mg) in dioxane (5 mL) was added $2 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at rt for 5 days. After neutralization with diluted HCl the reaction solution was partitioned between $\mathrm{H}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase was evaporated under reduced pressure to give a residue that was separated by PTLC using $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($30: 1$) to afford a product (0.9 mg): $[\alpha]^{20}{ }_{\mathrm{D}}-6.1$ ($c 0.20, \mathrm{MeCN}$); CD (MeCN) $230(\Delta \varepsilon-0.01), 241(\Delta \varepsilon-0.21), 257$ $(\Delta \varepsilon+0.18)$, $274.5(\Delta \varepsilon-0.22) \mathrm{nm}$. These data and the ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ESIMS data of the product were completely consistent with those of the co-occurring (- -medioresinol. ${ }^{33}$ Similarly, $11(7.6 \mathrm{mg})$ was hydrolyzed to afford (-)-medioresinol $(0.8 \mathrm{mg})$. Compounds 12-18 were hydrolyzed using the same procedure to produce a colorless gum: $[\alpha]^{20}{ }_{\mathrm{D}}-7.0(c 0.10, \mathrm{MeCN})$; CD (MeCN) $209(\Delta \varepsilon-1.54), 232(\Delta \varepsilon 0.00), 241(\Delta \varepsilon-0.07), 254(\Delta \varepsilon+0.12), 270$ $(\Delta \varepsilon-0.12) \mathrm{nm}$. These data, and the ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 300 \mathrm{MHz}\right)$ and ESIMS data of the product, were identical to those of the cooccurring (-)-syringaresinol. ${ }^{26}$
(-)-(7'I $\left.R, 8^{\prime \prime} S\right)-4^{\prime \prime}, 5,7-T r i h y d r o x y-3^{\prime}, 5^{\prime}$-dimethoxy-4', $8^{\prime \prime}$-oxyflavo-nolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (19): yellow, amorphous powder; $[\alpha]^{20}{ }_{D}-61.1$ (c $0.03, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 209$ (4.19), 270 (3.70), 345 (3.89) nm; CD (MeCN) $239(\Delta \varepsilon-0.44), 266(\Delta \varepsilon+0.07), 283$ ($\Delta \varepsilon-0.03$), $322(\Delta \varepsilon+0.09), 362(\Delta \varepsilon-0.13) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4^{-}}$ induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 323(\Delta \varepsilon-0.08)$, $356(\Delta \varepsilon-0.04), 386$ $(\Delta \varepsilon-0.01), 410(\Delta \varepsilon-0.02), 435(\Delta \varepsilon 0.00), 469(\Delta \varepsilon-0.03)$; $\operatorname{IR} v_{\max }$ 3436, 2923, 1653, 1615, 1505, 1461, 1355, 1263, 1160, 1118, $838 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) data, see Table $6 ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz})$ data, see Table 6; $(-)$-ESIMS $m / z 495[\mathrm{M}-\mathrm{H}]^{-}$.
(-)-(7'IIS, $\left.8^{\prime \prime} S\right)-4^{\prime \prime}, 5,7$-Trihydroxy-3', 5^{\prime}-dimethoxy- $4^{\prime}, 8^{\prime \prime}$-oxyflavono-lignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (20): yellow, amorphous powder; $[\alpha]^{20}$ D -20.0 (c0.02, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 202(4.17), 272$ (3.30), $334(3.11) \mathrm{nm} ;$ $\mathrm{CD}(\mathrm{MeCN}) 221(\Delta \varepsilon+0.21), 246(\Delta \varepsilon-0.19), 268(\Delta \varepsilon+0.05), 286$ $(\Delta \varepsilon-0.01), 318(\Delta \varepsilon+0.08), 353(\Delta \varepsilon-0.07) \mathrm{nm} ; \mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}-$ induced CD $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 308(\Delta \varepsilon-0.19), 362(\Delta \varepsilon+0.07)$, $424(\Delta \varepsilon$ $+0.01), 452(\Delta \varepsilon+0.06), 469(\Delta \varepsilon+0.05)$; IR $\nu_{\max } 3204,2947,1657$, $1618,1594,1500,1454,1365,1242,1165,1120,1050,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{2}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$) data, see Table $6 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) data, see Table 6; (-)-ESIMS $m / z 495[\mathrm{M}-\mathrm{H}]^{-}$.
(-)-(7 $\left.7^{\prime \prime} R, 8^{\prime \prime} S\right)-4^{\prime \prime}, 5,7-T r i h y d r o x y-3^{\prime}, 3^{\prime \prime}, 5^{\prime}$-trimethoxy- $4^{\prime}, 8^{\prime \prime}$-oxyfla-vonolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (21): yellow, amorphous powder; $[\alpha]^{20}{ }_{D}-18.3$ ($c 0.03, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 203$ (4.15), 271 (3.56), 337 (3.56) nm; CD (MeCN) $207(\Delta \varepsilon+0.79), 232(\Delta \varepsilon-0.45), 271(\Delta \varepsilon$ $+0.19), 294(\Delta \varepsilon 0.00), 320(\Delta \varepsilon+0.12), 356(\Delta \varepsilon-0.12) \mathrm{nm} ; \mathrm{Rh}_{2}-$ $\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 331(\Delta \varepsilon-0.07)$, $353.5(\Delta \varepsilon-0.03)$, $377(\Delta \varepsilon 0.00), 404(\Delta \varepsilon-0.01)$; IR $\nu_{\text {max }} 3421,2924,1655,1618,1592$, 1498, 1460, 1357, 1248, 1165, 1126, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ MHz) data, see Table $6 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) data, see Table 6; (-)-ESIMS $m / z 525[\mathrm{M}-\mathrm{H}]^{-}$.
(-)-(7' $\left.5,8^{\prime \prime} S\right)-4^{\prime \prime}, 5,7-T r i h y d r o x y-3^{\prime}, 3^{\prime \prime}, 5^{\prime}$-trimethoxy- $4^{\prime}, 8^{\prime \prime}$-oxyfla-vonolignan- $7^{\prime \prime}, 9^{\prime \prime}$-diol (22): yellow, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-11.2$ $(c 0.03, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 203$ (4.18), 279 (3.62), 336 (3.51) nm; CD (MeCN) $221(\Delta \varepsilon+0.24), 241(\Delta \varepsilon-0.37), 267(\Delta \varepsilon$ $+0.27), 298(\Delta \varepsilon-0.02), 318(\Delta \varepsilon+0.07), 348(\Delta \varepsilon-0.06) \mathrm{nm} ;$ $\mathrm{Rh}_{2}\left(\mathrm{OCOCF}_{3}\right)_{4}$-induced $\mathrm{CD}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 325(\Delta \varepsilon-0.13), 366(\Delta \varepsilon$ $+0.05), 452(\Delta \varepsilon+0.01) \mathrm{nm}$; IR $\nu_{\text {max }}$ 3381, 2941, 1654, 1614, 1505, 1463, 1355, 1263, 1160, 1117, $835 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500$ MHz) data, see Table $6 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) data, see Table 6; (-)-ESIMS $m / z 525[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of Acetonide Derivatives of 10a-15a and 18a-22a. A solution of $\mathbf{1 0}(5.0 \mathrm{mg})$ in dry acetone (5 mL) was treated with 2,2-dimethoxypropane (8.0 mL) and ($1 S$)-(+)-camphorsulforic acid (CSA) $(0.5 \mathrm{mg})$, and the mixture was stirred at rt for 4 h . The reaction mixture was quenched by addition of triethylamine and then evaporated under reduced pressure to give a crude product that was purified by PTLC using $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (20:1) to afford acetonide 10a $(4.1 \mathrm{mg})$. Similarly, $\mathbf{1 1}(5.6 \mathrm{mg}), \mathbf{1 2}(4.3 \mathrm{mg}), \mathbf{1 3}(8.4 \mathrm{mg}), \mathbf{1 4}(5.0 \mathrm{mg})$, $\mathbf{1 5}(4.7 \mathrm{mg}), \mathbf{1 8}(5.0 \mathrm{mg}), \mathbf{1 9}(4.5 \mathrm{mg}), 20(4.0 \mathrm{mg}), \mathbf{2 1}(4.4 \mathrm{mg})$, and 22 $(4.5 \mathrm{mg})$ yielded acetonide derivatives 11a $(4.0 \mathrm{mg}), \mathbf{1 2 a}(3.2 \mathrm{mg}), \mathbf{1 3 a}$ $(6.9 \mathrm{mg}), \mathbf{1 4 a}(4.3 \mathrm{mg}), \mathbf{1 5 a}(3.3 \mathrm{mg}), \mathbf{1 8 a}(3.8 \mathrm{mg}), 19 \mathrm{a}(3.2 \mathrm{mg}), \mathbf{2 0 a}$ $(2.4 \mathrm{mg}), 21 \mathrm{a}(3.5 \mathrm{mg})$, and 22a $(3.0 \mathrm{mg})$, respectively. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 500 \mathrm{MHz}$) data of $10 \mathrm{a}-15 \mathrm{a}$, see Supporting Information, Table S1; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 125 \mathrm{MHz}$) data of $\mathbf{1 0} \mathbf{a}-\mathbf{1 5 a}$, see Supporting Information, Table S1; ${ }^{1} \mathrm{H}$ NMR data (DMSO- d_{6}, 500 MHz) data of 19a-22a, see Supporting Information, Table S2.

- ASSOCIATED CONTENT

(s) Supporting Information. Copies of IR, MS, 1D and/or 2D NMR, and CD spectra for compounds $\mathbf{1 - 2 2}$. NMR spectra of compounds 3 a and acetonide derivatives of $\mathbf{1 0} \mathbf{- 2 2}$ (10a-22a). Table S1, NMR data (δ) for 10a-15a. Table S2, ${ }^{1}$ H NMR data (δ) for 19a-22a. This can be accessed free of charge via the Internet at http://pubs.acs.org.

- AUTHOR INFORMATION

Corresponding Author

*Tel: 86-10-83154789. Fax: 86-10-63017757.E-mail: zhuchenggen@ imm.ac.cn and shijg@imm.ac.cn.

- ACKNOWLEDGMENT

Financial support from the National Natural Sciences Foundation of China (NNSFC; grant nos. 30825044 and 20932007) and the National Science and Technology Project of China (nos. 2009ZX09311-004 and 2009ZX09301-003-4-1) is acknowledged.

REFERENCES

(1) Jiangsu New Medical College. Dictionary of Traditional Chinese Medicine; Shanghai Science and Technology Publishing House: Shanghai, 1986; p 2514.
(2) Jia, H. H.; Wu, X. D. Zhong Yao Cai. 1992, 15, 35-36.
(3) Yang, X. J.; Liu, J. H.; Gao, Y. Q.; Huo, X.; Gao, L. X. Nat. Prod. Res. Dev. 2002, 14, 31-32.
(4) Moss, G. P. Pure Appl. Chem. 2000, 72, 1493-1523.
(5) (a) Kikuchi, T.; Matsuda, S.; Kadota, S.; Tai, T. Chem. Pharm. Bull. 1985, 33, 1444-1451. (b) Deyama, T.; Ikawa, T.; Kitagawa, S.; Nishibe, S. Chem. Pharm. Bull. 1986, 34, 4933-4938. (c) Miyaichi, Y.; Tomimori, T. Nat. Med. (Tokyo) 1998, 52, 82-86. (d) Nunomura, S. M.; Yoshida, M. Rev. Latinoam. Quim. 2001, 29, 108-111.
(6) (a) Houghton, P. J. Phytochemistry 1985, 24, 819-826. (b) Morreel, K.; Ralph, J.; Kim, H.; Lu, F.; Goeminne, G.; Ralph, S.; Messens, E.; Boerjan, W. Plant Physiol. 2004, 136, 3537-3549. (c) Macias, F. A.; Lopez, A.; Varela, R. M.; Torres, A.; Molinillo, J. M. J. Agric. Food. Chem. 2004, 52, 6443-6447. (d) Damiani, I.; Morreel, K.; Danoun, S.; Goeminne, G.; Yahiaoui, N.; Marque, C.; Kopka, J.; Messens, E.; Goffner, D.; Boerjan, W.; Boudet, A. M.; Rochange, S. Plant Mol. Biol. 2005, 59, 753-769.
(7) (a) Omori, S.; Sakakibara, A. Mokuzai Gakkaishi 1974, 20, 48-49. (b) Omori, S.; Sakakibara, A. Mokuzai Gakkaishi 1975, 21, 170-175. (c) Hwang, B. H.; Sakakibara, A. Mokuzai Gakkaishi 1979, 25, 647-652. (d) Kamaya, Y.; Nakatsubo, F.; Higuchi, T. Mokuzai Gakkaishi. 1980, 26, 471-475. (e) Cui, Y. L.; Mu, Q.; Hu, C. Q. Nat. Prod. Res. Dev. 2003, 15, 277-283. (f) Cutillo, F.; Dellagreca, M.; Gionti, M.; Previtera, L.; Zarrelli, A. Phytochem. Anal. 2006, 17, 344-349. (g) Fiorentino, A.; Dellagreca, M.; Dabrosca, B.; Oriano, P.; Golino, A.; Izzo, A.; Zarrelli, A.; Monaco, P. Biochem. Syst. Ecol. 2007, 35, 392-396. (h) Li, S. F.; Di, Y. T.; Wang, Y. H.; Tan, C. J.; Fang, X.; Zhang, Y.; Zheng, Y. T.; Li, L.; He, H. P.; Li, S. L.; Hao, X. J. Helv. Chim. Acta 2010, 93, 1795-1802.
(8) Omori, S.; Sakakibara, A. Mokuzai Gakkaishi 1979, 25, 145-148.
(9) (a) Matsuda, S.; Kadota, S.; Tai, T.; Kikuchi, T. Chem. Pharm. Bull. 1984, 32, 5066-5069. (b) Uchiyama, T.; Miyase, T.; Ueno, A.; Usmanghani, K. Phytochemistry 1989, 28, 3369-3372.(c) Dellagreca, M.; Cutillo, F.; D'Abrosca, B.; Fiorentino, A.; Zarrelli, A. ACS Symp. Ser. 2006, 927 (Natural Products for Pest Management), 24-26. (d) Bao, S.; Ding, Y.; Deng, Z.; Proksch, P.; Lin, W. Chem. Pharm. Bull. 2007, 55, 1175-1180. (e) Yang, X. W.; Zhao, P. J.; Ma, Y. L.; Xiao, H. T.; Zuo, Y. Q.; He, H. P.; Li, L.; Hao, X. J. J. Nat. Prod. 2007, 70, 521-525. (f) Han, H. Y.; Liu, H. W.; Wang, N. L.; Yao, X. S. Nat. Prod. Res. 2008, 22, 984-989.
(10) Cutillo, F.; D'Abrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. J. Agric. Food. Chem. 2003, 51, 6165-6172.
(11) Chang, C. L.; Wang, G. J.; Zhang, L. J.; Tsai, W. J.; Chen, R. Y.; Wu, Y. C.; Kuo, Y. H. Phytochemistry 2010, 71, 271-279.
(12) (a) Syrchina, A. I.; Gorshkov, A. G.; Shcherbakov, V. V.; Zinchenko, S. V.; Vereshchagin, A. L.; Zaikov, K. L.; Semenov, A. A. Chem. Nat. Compd. 1992, 28, 155-158. (b) Bouaziz, M.; Veitch, N. C.; Grayer, R. J.; Simmonds, M. S.; Damak, M. Phytochemistry 2002, 60, 515-520. (c) Nakajima, Y.; Yun, Y. S.; Kunugi, A. Tetrahedron 2003, 59, 8011-8015. (d) Wenzig, E.; Kunert, O.; Ferreira, D.; Schmid, M.; Schuhly, W.; Bauer, R.; Hiermann, A. J. Nat. Prod. 2005, 68, 289-292. (e) Zhang, J.; Wang, Y.; Zhang, X. Q.; Zhang, Q. W.; Ye, W. C. Chin. J. Nat. Med. 2009, 7, 428-431.
(13) Zhang, Z.; Guo, D.; Li, C.; Zheng, J.; Koike, K.; Jia, Z.; Nikaido, T. Phytochemistry 1999, 51, 469-472.
(14) (a) Snatzke, G.; Kajtar, M.; Werner-Zamojska, F. Tetrahedron 1972, 28, 281-288. (b) Lorentzen, R. J.; Brewster, J. H.; Smith, H. E. J. Am. Chem. Soc. 1992, 114, 2181-2187, and references therein.
(15) Liao, S. G.; Wu, Y.; Yue, J. M. Helv. Chim. Acta 2006, 89, 73-80.
(16) Gan, M. L.; Zhang, Y. L.; Lin, S.; Liu, M. T.; Song, W. X.; Zi, J. C.; Yang, Y. C.; Fan, X. N.; Shi, J. G.; Hu, J. F.; Sun, J. D.; Chen, N. H. J. Nat. Prod. 2008, 71, 647-654.
(17) (a) Arnoldi, A.; Merlini, L. J. Chem. Soc., Perkin Trans. 1 1985, 2555-2557. (b) Greca, M. D.; Molinaro, A.; Monaco, P.; Previtera, L. Phytochemistry 1994, 35, 777-779. (c) Huo, C.; Liang, H.; Zhao, Y.; Wang, B.; Zhang, Q. Phytochemistry 2008, 69, 788-795.
(18) (a) Frelek, J.; Szczepek, W. J. Tetrahedron: Asymmetr. 1999, 10, 1507-1520. (b) Jadwiga, F.; Klimek, A.; Ruskowska, P. Curr. Org. Chem. 2003, 7, 1081-1104.
(19) Yang, Y. P.; Cheng, M. J.; Teng, C. M.; Chang, Y. L.; Tsai, I. L.; Chen, I. S. Phytochemistry 2002, 61, 567-572.
(20) Kim, K. H.; Moon, E.; Kim, S. Y.; Lee, K. R. J. Agric. Food. Chem. 2010, 58, 4779-4785.
(21) (a) Antus, S.; Kurtan, T.; Juhasz, L.; Kiss, L.; Hollosi, M.; Majer, Z. S. Chirality 2001, 13, 493-506. (b) Yoshikawa, M.; Morikawa, T.; Xu, F.; Ando, S.; Matsuda, H. Heterocycles 2003, 60, 1787-1792.
(22) Yoshikawa, K.; Kinoshita, H.; Kan, Y.; Arihara, S. Chem. Pharm. Bull. 1995, 43, 578-581.
(23) Hirai, N.; Okamoto, M.; Udagawa, H.; Yamamuro, M.; Kato, M.; Koshimizu, K. Biosci. Biotechnol. Biochem. 1994, 58, 1679-1684.
(24) (a) Sugiyama, M.; Nagayama, E.; Kikuchi, M. Phytochemistry 1993, 33, 1215-1219. (b) Nakamura, S.; Zhang, Y.; Wang, T.; Matsuda, H.; Yoshikawa, M. Heterocycles 2008, 75, 1435-1446.
(25) (a) Kikuchi, M.; Kikuchi, M. Chem. Pharm. Bull. 2005, 53, 48-51. (b) Yamauchi, H.; Kakuda, R.; Yaoita, Y.; Machida, K.; Kikuchi, M. Chem. Pharm. Bull. 2007, 55, 346-347.
(26) Quyang, M. A.; Wein, Y. S.; Zhang, Z. K.; Kuo, Y. H. J. Agric. Food. Chem. 2007, 55, 6460-6465.
(27) (a) Greger, H.; Hofer, O. Tetrahedron 1980, 36, 3551-3558. (b) Vermes, B.; Seligmann, O.; Wagner, H. Phytochemistry 1991, 30, 3087-3089. (c) Miyazawa, M.; Kasahara, H.; Kameoka, H. Phytochemistry 1993, 32, 1421-1424.
(28) Hofer, O.; Schoim, R. Tetrahedron 1981, 37, 1181-1186.
(29) Deyama, T.; Ikawa, T.; Nishibe, S. Chem. Pharm. Bull. 1985, 33, 3651-3657.
(30) Hosokawa, A.; Sumino, M.; Nakamura, T.; Yano, S.; Sekine, T.; Ruangrungsi, N.; Watanabe, K.; Ikegami, F. Chem. Pharm. Bull. 2004, 52, 1265-1267.
(31) (a) Morikawa, T.; Matsuda, H.; Nishida, N.; Ohgushi, T.; Yoshikawa, M. Chem. Pharm. Bull. 2004, 52, 1387-1390. (b) Lourith, N.; Katayama, T.; Suzuki, T. J. Wood. Sci. 2005, 51, 370-378.
(32) (a) Harada, N.; Nakanishi, K. J. Am. Chem. Soc. 1969, 91, 3989-3991.(b) Nakanishi, K.; Berova, N.; Woody, R. Circular Dichroism Principles and Applications; VCH Publisher: New York, 1994; pp 361-398.
(33) Ito, M.; Matsuzaki, K.; Wang, J.; Daikongya, A.; Wang, N. L.; Yao, X. S.; Kitanaka, S. Chem. Pharm. Bull. 2010, 58, 628-633.
(34) Li, H.; Zhou, C.; Pan, Y.; Gao, X.; Wu, X.; Bai, H.; Zhou, L.; Chen, Z.; Zhang, S.; Shi, S.; Luo, J.; Xu, J.; Chen, L.; Zheng, X.; Zhao, Y. Planta Med. 2005, 71, 1128-1133.
(35) Kobzar, Y.; Nikonov, G. K. Chem. Nat. Compd. 1986, 22, 600-601.
(36) Achenbach, H.; Loewel, M.; Waibel, R.; Gupta, M.; Solis, P. Planta Med. 1992, 58, 270-272.
(37) Han, L.; Huang, X. S.; Sattler, I.; Fu, H. Z.; Grabley, S.; Lin, W. H. J. Asian Nat. Prod. Res. 2007, 9, 327-331.
(38) Katayama, T.; Tsutsui, J.; Tsueda, K.; Miki, T.; Yamada, Y.; Sogo, M. J. Wood. Sci. 2000, 46, 458-465.
(39) Achenbach, H.; Stocker, M.; Constenla, M. A. Phytochemistry 1988, 27, 1835-1841.
(40) Tao, J.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Bull. 2003, 51, 654-662.
(41) Cooper, R.; Gottlieb, H. E.; Lavie, D. Isr. J. Chem. 1977, 16, 12-15.
(42) Lin, S.; Wang, S. J.; Liu, M. T.; Gan, M. L.; Li, S.; Yang, Y. C.; Wang, Y. H.; He, W. Y.; Shi, J. G. J. Nat. Prod. 2007, 70, 817-823.
(43) Fan, X. N.; Zi, J. C.; Zhu, C. G.; Xu, W. D.; Cheng, W.; Yang, S.; Guo, Y.; Shi, J. G. J. Nat. Prod. 2009, 72, 1184-1190.
(44) Wang, Y.; Shang, X. Y.; Wang, S. J.; Mo, S. Y.; Li, S.; Yang, Y. C.; Ye, F.; Shi, J. G.; He, L. J. Nat. Prod. 2007, 70, 296-299.
(45) Cheng, W.; Zhu, C. G.; Xu, W. D.; Fan, X. N.; Yang, Y. C.; Li, Y.; Chen, X. G.; Wang, W. J.; Shi, J. G. J. Nat. Prod. 2009, 72, 2145-2152.
(46) Mo, S. Y.; Wang, S. J.; Zhou, G. X.; Yang, Y. C.; Li, Y.; Chen, X. G.; Shi, J. G. J. Nat. Prod. 2004, 67, 823-828.

[^0]: Received: February 8, 2011
 Published: April 06, 2011

